Automated management of large fabrics with ELFms

Germán Cancio for CERN IT/FIO
LCG-Asia Workshop
Taipei, 26/7/2004

German.Cancio@cern.ch
Outline

- ELFms and its subsystems:
 - Quattor
 - Lemon
 - LEAF

- Deployment status
ELFms stands for ‘**Extremely Large Fabric management system**’

Subsystem:
- **quattor**: configuration, installation and management of nodes
- : system / service monitoring
- : hardware / state management

- ELFms manages and controls most of the nodes in the CERN CC
 - ~2100 nodes out of ~2400
 - Multiple functionality and cluster size (batch nodes, disk servers, tape servers, DB, web, ...)
 - Heterogeneous hardware (CPU, memory, HD size,..)
 - Supported OS: Linux (RH7, RHEL2.1, RHEL3) and Solaris (9)
http://quatttor.org
Quattor takes care of the *configuration, installation* and *management* of fabric nodes

→ A **Configuration Database** holds the ‘desired state’ of all fabric elements
 - Node setup (CPU, HD, memory, software RPMs/PKGs, network, system services, location, audit info...)
 - Cluster (name and type, batch system, load balancing info...)
 - Defined in templates arranged in hierarchies – common properties set only once

→ Autonomous management agents running on the node for
 - **Base installation**
 - **Service (re-)configuration**
 - **Software installation and management**

→ Quattor was developed in the scope of EU DataGrid. Development and maintenance now coordinated by CERN/IT
Configuration Database

GUI

CLI

Scripts

CDB

RDBMS

XML

Cache

CCM

Node

LEAF, LEMON, others

Node Management Agents

pan

SOAP

HTTP

SQL

Node Management Agents
[lxplus009] ~ > cdbop

CDB CLI: Version 1.7

Enter user-name: gcancio
Enter password:

Connecting to https://cobserv.cern.ch...

Welcome to CDB Command Line Interface
Type 'help' for more info

cdb> open
cdb> get profile_lxb1002
[INFO] getting template: profile_lxb1002.tpl
cdb> list profile_lcgmon*
[INFO] listing templates
profile_lcgmon001d
profile_lcgmon002d

cdb> [BEGIN]
```
[lxplus040] ~ > ncm-query --dump /hardware/harddisks

[INFO] Subtree: /hardware/harddisks
+-harddisks
   +-hda
       $ capacity : (long) '19456'
       $ interface : (string) 'ide'
       $ model : (string) 'WDC WD200BB-00CLB0'

[lxplus040] ~ > ncm-query --dump /hardware/serialnumber

[INFO] Subtree: /hardware/serialnumber
$ serialnumber : (string) '2826000223'

[lxplus040] ~ > ncm-query --dump /system/network/interfaces/eth0

[INFO] Subtree: /system/network/interfaces/eth0
+-eth0
   $ driver : (string) 'e100'
   $ gateway : (string) '137.138.1.1'
   $ ip : (string) '137.138.4.212'
   $ netmask : (string) '255.255.0.0'
```
```sql
SELECT hostname, serialnumber, contracttype
FROM vwhost
WHERE serialnumber IN
(SELECT serialnumber
FROM vwhost
GROUP BY serialnumber
HAVING count(serialnumber) > 1);
```

<table>
<thead>
<tr>
<th>#</th>
<th>HOSTNAME</th>
<th>SERIALNUMBER</th>
<th>CONTRACTTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lxshare0338</td>
<td>2826000109</td>
<td>no contract</td>
</tr>
<tr>
<td>2</td>
<td>lxshare0337</td>
<td>2826000109</td>
<td>no contract</td>
</tr>
<tr>
<td>3</td>
<td>tbcd0040</td>
<td>3040-0061</td>
<td>no contract</td>
</tr>
<tr>
<td>4</td>
<td>tbcd0085</td>
<td>3040-0061</td>
<td>no contract</td>
</tr>
<tr>
<td>5</td>
<td>tbcd0041</td>
<td>3040-0062</td>
<td>no contract</td>
</tr>
<tr>
<td>6</td>
<td>tbcd0086</td>
<td>3040-0062</td>
<td>no contract</td>
</tr>
<tr>
<td>7</td>
<td>tbcd0087</td>
<td>3040-0063</td>
<td>no contract</td>
</tr>
<tr>
<td>8</td>
<td>tbcd0042</td>
<td>3040-0063</td>
<td>no contract</td>
</tr>
</tbody>
</table>
Managing (cluster) nodes

Managed nodes

- SW package Manager (SPMA)
- Cache
- Installed software:
 - kernel, system, applications...
- System services:
 - AFS, LSF, SSH, accounting...

Software Servers

- Software Replicator (SWRep)
- System installer:
 - RH73, RHES, Fedora, ...

Install server

- Vendor
- System installer
- Install Manager
- SW package Manager (SPMA)
- CDB

Installed software:
- kernel, system, applications...

Node Configuration Manager (NCM)

Managed nodes

- Node Configuration Manager (NCM)
- CCM
- RPM, PKG

Install server

- Install Manager
- Node (re)install
- Node Configuration Manager (NCM)
- CDB

Install server

- Install Manager
- Node (re)install
- Node Configuration Manager (NCM)
- CDB

Install server

- Install Manager
- Node (re)install
- Node Configuration Manager (NCM)
- CDB
Node Management Agents

- **NCM (Node Configuration Manager):** framework system, where service specific plug-ins called *Components* make the necessary system changes to bring the node to its CDB desired state
 - Regenerate local config files (e.g. `/etc/sshd/sshd_config`), restart/reload services (SysV scripts)
 - Large number of components available (system and Grid services)

- **SPMA (Software Package Mgmt Agent) and SWRep:** Manage all or a *subset* of packages on the nodes
 - Full control on production nodes: *full control* - on development nodes: *non-intrusive*, configurable management of system and security updates.
 - Package *manager*, not only *upgrader* (roll-back and transactions)

- **Portability:** Generic framework; plug-ins for NCM and SPMA available for RHL (RH7, RHES3) and Solaris 9

- **Scalability to O(10K) nodes**
 - Automated replication for redundant / load balanced CDB/SWRep servers
 - Use scalable protocols eg. HTTP and replication/proxy/caching technology ([slides here](#))
http://cern.ch/lemon
Lemon – LHC Era Monitoring

Lemon

Monitoring Repository

Configuration Database

RRD Tool Framework

Correlation Engine

Node

Monitoring Sensor Agent

Monitoring Sensor

Soap/WSDL

Apache/PHP

Users

Monitoring repository backend

ELFms – German Cancio - n° 15
LEMON

- Monitoring sensors and agent
 - Large amount of metrics (~ 10 sensors implementing 150 metrics)
 - Plug-in architecture: new sensors and metrics can easily be added
 - Asynchronous push/pull protocol between sensors and agent
 - Available for Linux and Solaris

- Repository
 - Data insertion via TCP or UDP
 - Data retrieval via SOAP
 - Backend implementations for text file and Oracle SQL
 - Keeps current and historical samples – no aging out of data but archiving on TSM and CASTOR

- Correlation Engines and ‘self-healing’ Fault Recovery
 - allows plug-in correlations accessing collected metrics and external information (eg. quattor CDB, LSF), and also launch configured recovery actions
 - Eg. average number of users on LXPLUS, total number of active LCG batch nodes
 - Eg. cleaning up /tmp if occupancy > x %, restart daemon D if dead, ...

- Visualization
 - Next slide

- As with Quattor, LEMON is an EDG development now maintained by CERN/IT
http://cern.ch/leaf
LEAF (LHC Era Automated Fabric): Collection of workflows for *automated* node hardware and state management

- **HMS (Hardware Management System):**
 - Track systems through all steps in lifecycle eg. installation, moves, vendor calls, retirement
 - Automatically requests installs, retires etc. to technicians
 - GUI to locate equipment physically
 - HMS implementation is CERN specific, but concepts and design should be generic

- **SMS (State Management System):**
 - Automated handling high-level configuration steps, eg.
 - Reconfigure and reboot all LXPLUS nodes for new kernel
 - Reallocate nodes inside LXBATCH for Data Challenges
 - Drain and reconfig node X for diagnosis / repair operations
 - Extensible framework – plug-ins for site-specific operations possible
 - Issues all necessary (re)configuration commands on top of quattor CDB and NCM
 - Uses a state transition engine

- **HMS and SMS interface to Quattor and LEMON (or rather: sit on top!)** for setting/getting node information respectively
LEAF screenshots
ELFms status – Quattor (I)

- Manages (almost) all Linux boxes in the computer centre
 - ~ 2100 nodes, to grow to ~ 8000 in 2006-8
 - LXPLUS, LXBATCH, LXBUILD, disk and tape servers, Oracle DB servers
 - Solaris clusters, server nodes and desktops to come for Solaris9

- Starting: head nodes using Apache proxy technology for software and configuration distribution

- Misc developments pending, like
 - Fine-grained ACL protection to templates
 - HTTPS instead of HTTP for CDB profile and SW transport
ELFms status – Quattor (II)

- LCG-2 WN configuration components available
 - Configuration components for RM, EDG/LCG setup, Globus
 - Progressive reconfiguration of LXBATCH nodes as LCG-2 WN’s

- Community driven effort to use quattor for general LCG-2 configuration
 - Coordinated by staff from IN2P3 and NIKHEF
 - Aim is to provide a complete porting of EDG-LCFG config components to Quattor for all LCG services
 - CERN and UAM Madrid providing generic installation instructions and site-independent packaging, as well as a Savannah development portal
 - Installation toolkit, user’s guide, tutorials available

- **EGEE** has chosen quattor for managing their integration testbeds

- **Tier1/2** sites as well as LHC experiments evaluating using quattor for managing their own farms
ELFms status – LEMON (I)

- Smooth production running of MSA agent and Oracle-based repository at CERN-CC
 - 150 metrics sampled every 30s -> 1d
 - ~ 1 GB of monitoring data / day on ~ 2100 nodes
 - New sensors and metrics, eg. tape robots, temperature, SMART disk info
- GridICE project uses LEMON for data collection
- Gathering experiment requirements and interfacing to grid-wide monitoring systems (MonaLisa, GridICE)
 - Good interaction with, and gathered feedback from CMS DC04
 - Archived raw monitoring data will be used for CMS computing TDR
- Visualization:
 - Operators - Test interface to new generation alarm systems (LHC control alarm system)
 - Finish status display pages
ELFms status – LEMON (II)

- Work on redundancy solutions for Monitoring Repository (homegrown and/or Oracle Streams)

- Quality of Service indicators, correlations and actuators (in collaboration with BARC India)
 - Ie. “tell LEAF to reassign two more nodes from LXBATCH to LXPLUS since capacity insufficient”
 - Provide batch job mix indicators for improved I/O and CPU load equilibrium
ELFms status - LEAF

- HMS in full production for all nodes in CC
 - HMS heavily used during CC node migration
- SMS in production for LXBATCH

Next steps:
- Deploy SMS across more clusters
- Tighter HMS/SMS integration (automatic put nodes in and out production during eg. rack moves)

- Developing ‘asset management’ GUI replacing PC finder
 - Client of HMS and SMS
 - Drag&drop nodes to automatically initiate HMS moves
 - Multiple select nodes, then initiate action eg. kernel upgrade
 - Interface to LEMON GUI
Summary

- **ELFms** is deployed in production at CERN
 - Stabilized results from 3-year developments within EDG and LCG
 - Established technology
 - Providing real added-on value for day-to-day operations

- Quattor and LEMON are generic software
 - Other projects and sites getting involved

- Site-specific workflows and “glue scripts” can be put on top for smooth integration with existing fabric environments
 - LEAF HMS and SMS

- **CERN will help with Quattor (and LEMON) deployment at other sites**
 - We provide site-independent software and installation instructions
 - **Collaboration** for providing missing pieces, eg. configuration components, GUI’s, beginner’s user guides?

- More information: http://cern.ch/elfms
WP4 architecture concepts

- Information model. Configuration is distinct from monitoring
 - Configuration == desired state (what we want)
 - Monitoring == actual state (what we have)

- Modularity
 - Open interfaces and protocols

- Extensibility
 - Allow for 3rd-party and site specific plug-ins and add-ons

- Scalability
 - Thousands of nodes

- Automation
 - Minimize manual interventions

- Node autonomy
 - Operations are handled locally whenever possible

- Site autonomy
 - A site must keep control of its local resources
The Use of Quattor

a status report

Some people from LCG participating institutes took the initiative to develop some essential Quattor modules for the installation, configuration and updates of the LCG2 software suite.

1. First workshop:
 - 8 dedicated testing sites and some others participated
 - In March just after the LCG workshop
 - An critical analysis was made of the usage of LCFGng for the EDG software.
 - Decided on a global configuration schema for the various grid components

2. Priorities:
 - Primarily for LCG2
 - For non-CERN worker nodes initially, then CE, BDII, SE

3. Work done:
 - Some modules written
 - Proper test bed defined and operational

4. Outlook:
 - Expected LCG-2 complete install end of the summer
 - Use in the EGEE JRA1 testing test bed
 - Expect from CERN to keep supporting the Quattor core team
Improvements wrt EDG-LCFG

- New and powerful configuration language
 - True hierarchical structures
 - Extendable data manipulation language
 - (user defined) typing and validation
- SQL query backend
- Portability
 - Plug-in architecture -> Linux and Solaris
- Enhanced components
 - Sharing of configuration data between components now possible
 - New component support libraries
 - Native configuration access API (NVA-API)
- Stick to the standards where possible
 - Installation subsystem uses system installer
 - Components don’t replace SysV init.d subsystem
- Modularity
 - Clearly defined interfaces and protocols
 - Mostly independent modules
 - “light” functionality built in (eg. package management)
- Improved scalability
 - Enabled for proxy technology
 - NFS mounts not necessary any longer
- Enhanced management of software packages
 - ACL’s for SWRep
 - Multiple versions installable
 - No need for RPM ‘header’ files
- Last but not least...: Support!
 - EDG-LCFG is frozen and obsoleted (no ports to newer Linux versions)
 - LCFG -> EDG-LCFGng -> quattor
Differences with ASIS/SUE

ASIS:
- Scalability
 - HTTP vs. shared file system
- Supports native packaging system (RPM, PKG)
- Manages all software on the node
- ‘real’ Central Configuration database
- (But: no end-user GUI, no package generation tool)

SUE:
- Focus on configuration, not installation
- Powerful configuration language
 - True hierarchical structures
 - Extendable data manipulation language
 - (user defined) typing and validation
 - Sharing of configuration data between components now possible
- Central Configuration Database
- Supports unconfiguring services
- Improved dependency model
 - Pre/post dependencies
- Revamped component support libraries
Differences with ROCKS

- Rocks: better documentation, nice GUI, easy to setup
- Design principle: reinstall nodes in case of configuration changes
 - No configuration or software updates on running systems
 - Suited for production? Efficiency on batch nodes, upgrades / reconfigs on 24/24, 7/7 servers (eg. gzip security fix, reconfig of CE address on WN’s)
- Assumptions on network structure (private, public parts) and node naming
- No indication on how to extend the predefined node types or extend the configured services
- Limited configuration capacities (key/value)
- No multiple package versions (neither on repository, nor simultaneously on a single node)
 - Eg. different kernel versions on specific node types
- Works only for RH Linux (Anaconda installer extensions)
NCM Component example

[...]

sub Configure {

 my ($self,$config) = @_;
 # access configuration information
 my $arch=$config->getValue('/system/architecture'); # CDB API
 $self->Fail ("not supported") unless ($arch eq 'i386');
 # (re)generate and/or update local config file(s)
 open (myconfig, '/etc/myconfig'); ...
 # notify affected (SysV) services if required
 if ($changed) {
 system('/sbin/service myservice reload'); ...
 }
}

sub Unconfigure { ... }
Key concepts behind quattor

- Autonomous nodes:
 - Local configuration files
 - No remote management scripts
 - No reliance on global file systems AFS/NFS

- Central control:
 - Primary configuration is kept centrally (and replicated on the nodes)
 - A single source for all configuration information

- Reproducibility:
 - Idempotent operations
 - Atomicity of operations

- Scalability:
 - Load balanced servers, scalable protocols

- Use of standards:
 - HTTP, XML, RPM/PKG, SysV init scripts, ...

- Portability:
 - Linux, Solaris