Using Grid to Facilitate Diseasome Analysis from Taiwan National Health Insurance Research Database

Yu-Chuan (Jack) Li and Ming-Chin Lin, Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan
Outline

- Introduction of NHIRD
- Frequency Distribution of Diseasesome
- Comorbidity Analysis
- Conclusion
The National Health Insurance Research Database (NHIRD)

- 10 years of data
- Coverage: about 99% residents in Taiwan
 (23 million people from 530 hospitals and 17,000 clinics)
- 360 million outpatient visits / year
- 25 million inpatient-day / year
The NHIRD is opened for research by application.

The NHIRD consists of claim records with numbers and text.

Demographics, Diagnoses (ICD 9-CM 2001 version), Medications, Procedures, Exams and Costs data.

Raw data size: 200GB / year.
Frequency of Visits

- Analyze database by patient visits
 - Frequency data over time (X-axis) and Age (Y-axis)
 - Heatmap visualization

Dermatophytosis of foot
Frequency of Visits (cont.)

- Analyze database by patient visits
 - Bottleneck --> Disk I/O Speed
 - Using 12 Apple Mac mini with external Firewire Hard Drive (400 Mbps)
 - Collective bandwidth on I/O: 4.8 Gbps
Frequency of Visits (cont.)

WWW

Grid (Globus)

Result DB

Send grid commend

Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec
Frequency of Visits (cont.)

Big Vs. mini

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big</td>
<td>Strong CPU</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>Strong I/O speed</td>
<td>Hard to upgrade</td>
</tr>
<tr>
<td>mini</td>
<td>Cheap</td>
<td>Mild CPU</td>
</tr>
<tr>
<td></td>
<td>Low maintain fee</td>
<td>Low I/O speed</td>
</tr>
</tbody>
</table>
Frequency of Visits (cont.)

- Difficulty on doing job on single machine
 - Limitation of database size
 - Take very long time to generate index table
 - Limitation of scaling up
 - Hard to improve the performance
 - Performance vs Price curve --> not linear
Disease Frequency HeatMap (NHIRD 2000)
Taiwan NHIRD 2000-2002

Influenza

Erythema multiforme

Lung Cancer
Hepatitis B with coma

3-year seasonal change of “Cough”

male

female
Influenza
Hand foot and mouth disease
GIS distribution of “Cough”
Cough
Cough
Retrospective study - Comorbidity analysis

The limitation

- Grouping all visit records by unique ID
- Software memory limitation - 2GB memory

<table>
<thead>
<tr>
<th>Essential HYPERTENSION</th>
<th>Jan</th>
<th>Feb</th>
<th>Total transaction record number (2000-2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>571,099</td>
<td>525,646</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>644,650</td>
<td>645,846</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>752,353</td>
<td>655,867</td>
<td>25,015,172</td>
</tr>
</tbody>
</table>
Disease Comorbidity analysis

For Comorbidity analysis
- ID1{dis1,dis2,dis3,dis4,...}

For example
- 192305,M,HS10710973,01340,2001-04-11,4919|4659|4019|3534|4011|38022|4640|3804|4785|3004|7291|78059|01340|460|4660
- 192505,F,KT71864585,01340,2002-07-10,01100|01340|29532|0113|0119
Solution-
Sorting and segmenting database for grid architecture
Our experience

- Divide NHIDB by month and year of Birthdates
- Divide NHIDB into 1,212 small databases
 - 12 months * 101 years (from 1900 to 2000) = 1,212 segments
- Easily scale up - Linear acceleration
- Low machine specification requirement
Comorbidity

- About 10 diagnoses per person in 3 years
- Clusters of comorbidity are being identified and pre-calculated
- 1TB of comorbidity data processed for 7 days under a 100-PC grid
Endometriosis

Neoplasm of unspecified nature of other genitourinary organs	55	7275	22158	11233	14.0
Neoplasm of unspecified nature of other specified sites	17	24635	22158	11233	1.0
Neoplasm of unspecified nature of breast	37	39736	22158	11233	1.0
Neoplasm of uncertain behavior of uterus	1	1123	22158	11233	1.0
Neoplasm of uncertain behavior of other and unspecified female genital organs	4	394	22158	11233	20.0
Neoplasm of uncertain behavior of ovary	82	4625	22158	11233	34.0
Neoplasm of uncertain behavior of breast	19	11003	22158	11233	3.0
Neoplasm of unspecified nature of brain	5	5670	22158	11233	1.0
Neoplasm of unspecified nature site unspecified	13	17132	22158	11233	1.0
Neoplasm of unspecified nature of endocrine glands and other parts of n...	2	2541	22158	11233	1.0
Neoplasm of unspecified nature of bone soft tissue and skin	12	39968	22158	11233	0.0
Neoplasm of uncertain behavior of other specified sites	30	1275	22158	11233	46.0
Neoplasm of unspecified nature of digestive system	6	31112	22158	11233	0.0
Neoplasm of uncertain behavior of liver and biliary passage	5	5386	22158	11233	1.0
Neoplasm of uncertain behavior of neurofibromatosis	1	1123	22158	11233	16.0
Conclusion

- Linear improvement of performance is achievable if the data are properly segmented.
- A heatmap for visualization of frequency distribution over season and patient age is useful for huge data sets.
- A geographical relationship of frequency distribution can also be visualized.
Conclusion (cont.)

- Comorbidity is one area that has great potential but very computation-intensive.
- Complete comorbidity data can be crossed with genome, haplome and bibliome data to achieve greater utility.
Thank you