Particle Therapy Simulation on GRID

Takashi Sasaki, Go Iwai and Koichi Murakami
KEK Computing Research Center
and
JST/CREST
The project

• Collaboration between Medical Physicists and Geant4 developers in Japan
• Funded by Japan Science and Technology Agency during 2003-2008
• Development on the software suit for particle therapy simulation including
 – Dose calculation engine, visualization, GRID and so on
• Validation on the simulation results
 – Interaction of carbons (nuclear fragmentation) are not well known yet
Particle Therapy

- Mostly using protons or carbons, sometime heavier ions or neutrons for cancer therapy
 - Synchrotrons or cyclotrons are used
- Advantage in quality of life (less collateral side effects)
Carbon therapy

• PROS
 – Carbons give narrower Bragg Peak than protons
 • Less side effects
 – Better biological effects than protons
 • Less dose, better efficiency

• CONS
 – More costs on construction for carbons than protons
 • Facility for protons is not cheap, anyway
 • 1B JPY vs 0.7B JPY
Contribution from particle physics

- Many of accelerator laboratories in the world are committing cancer therapy somehow
 - CERN
 - Accelerator developments
 - Research on anti-proton therapy
 - GSI
 - Heavy ion therapy
 - KEK
 - Proton therapy 1983-2000
 - Medical accelerator development
Particle therapy facility in operation

<table>
<thead>
<tr>
<th>Location</th>
<th>Facility Name</th>
<th>Type</th>
<th>Year</th>
<th>Total Patients</th>
<th>Date of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Vancouver (TRIUMF)</td>
<td>p</td>
<td>1995</td>
<td>111</td>
<td>Sep-06 eyes only</td>
</tr>
<tr>
<td>China</td>
<td>Wanjie (WPTC)</td>
<td>p</td>
<td>2004</td>
<td>270</td>
<td>July-06</td>
</tr>
<tr>
<td>England</td>
<td>Clatterbridge</td>
<td>p</td>
<td>1989</td>
<td>1584</td>
<td>Dec-06 eyes only</td>
</tr>
<tr>
<td>France</td>
<td>Nice (CAL)</td>
<td>p</td>
<td>1991</td>
<td>3129</td>
<td>Sep-06</td>
</tr>
<tr>
<td>France</td>
<td>Orsay (CPO)</td>
<td>p</td>
<td>1991</td>
<td>3126</td>
<td>Dec-06 eyes only</td>
</tr>
<tr>
<td>France</td>
<td>Orsay (CPO)</td>
<td>p</td>
<td>1991</td>
<td>640</td>
<td>Dec-06</td>
</tr>
<tr>
<td>Germany</td>
<td>Darmstadt (GSI)</td>
<td>C ion</td>
<td>1997</td>
<td>316</td>
<td>July-06</td>
</tr>
<tr>
<td>Germany</td>
<td>Berlin (HMI)</td>
<td>p</td>
<td>1998</td>
<td>829</td>
<td>Dec-06</td>
</tr>
<tr>
<td>Italy</td>
<td>Catania (INFN-LNS)</td>
<td>p</td>
<td>2002</td>
<td>114</td>
<td>Oct-06 eyes only</td>
</tr>
<tr>
<td>Japan</td>
<td>Chiba (HIMAC)</td>
<td>C ion</td>
<td>1994</td>
<td>2867</td>
<td>Aug-06</td>
</tr>
<tr>
<td>Japan</td>
<td>Kashiwa (NCC)</td>
<td>p</td>
<td>1998</td>
<td>462</td>
<td>Nov-06</td>
</tr>
<tr>
<td>Japan</td>
<td>Hyogo (HIBMC)</td>
<td>p</td>
<td>2001</td>
<td>1099</td>
<td>Sep-06</td>
</tr>
<tr>
<td>Japan</td>
<td>Hyogo (HIBMC)</td>
<td>C ion</td>
<td>2002</td>
<td>131</td>
<td>Sep-06</td>
</tr>
<tr>
<td>Japan</td>
<td>Tsukuba (PMRC, 2)</td>
<td>p</td>
<td>2001</td>
<td>930</td>
<td>July-06</td>
</tr>
<tr>
<td>Japan</td>
<td>WERC</td>
<td>p</td>
<td>2002</td>
<td>33</td>
<td>Aug-06</td>
</tr>
<tr>
<td>Japan</td>
<td>Shizuoka</td>
<td>p</td>
<td>2003</td>
<td>410</td>
<td>Nov-06</td>
</tr>
<tr>
<td>Russia</td>
<td>Moscow (ITEP)</td>
<td>p</td>
<td>1969</td>
<td>3858</td>
<td>Dec-05</td>
</tr>
<tr>
<td>Russia</td>
<td>St. Petersburg</td>
<td>p</td>
<td>1975</td>
<td>1320</td>
<td>Oct-06</td>
</tr>
<tr>
<td>Russia</td>
<td>Dubna (JINR, 2)</td>
<td>p</td>
<td>1999</td>
<td>318</td>
<td>July-06</td>
</tr>
<tr>
<td>South Africa</td>
<td>iThemba LABS</td>
<td>p</td>
<td>1993</td>
<td>486</td>
<td>Dec-06</td>
</tr>
<tr>
<td>Sweden</td>
<td>Uppsala (2)</td>
<td>p</td>
<td>1989</td>
<td>738</td>
<td>Dec-06</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Villigen PSI (72 MeV-Optis)</td>
<td>p</td>
<td>1984</td>
<td>4646</td>
<td>Dec-06 eyes only</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Villigen PSI (230 MeV)</td>
<td>p</td>
<td>1996</td>
<td>262</td>
<td>Dec-06</td>
</tr>
<tr>
<td>CA., USA</td>
<td>UCSF - CNS</td>
<td>p</td>
<td>1994</td>
<td>920</td>
<td>Mar-07</td>
</tr>
<tr>
<td>CA., USA</td>
<td>Loma Linda (LLUMC)</td>
<td>p</td>
<td>1990</td>
<td>11414</td>
<td>Nov-06</td>
</tr>
<tr>
<td>IN., USA</td>
<td>Bloomington (MPRI, 2)</td>
<td>p</td>
<td>2004</td>
<td>220</td>
<td>Sep-06</td>
</tr>
<tr>
<td>MA., USA</td>
<td>Boston (NPTC)</td>
<td>p</td>
<td>2001</td>
<td>2080</td>
<td>Oct-06</td>
</tr>
<tr>
<td>TX, USA</td>
<td>Houston (M.D. Anderson)</td>
<td>p</td>
<td>2006</td>
<td>114</td>
<td>Dec-06</td>
</tr>
<tr>
<td>FL, USA</td>
<td>Jacksonville (UFPTI)</td>
<td>p</td>
<td>2006</td>
<td>15</td>
<td>Dec-06</td>
</tr>
</tbody>
</table>

Compiled by PTCOG in Dec.2006
Facility under construction

<table>
<thead>
<tr>
<th>WHO, WHERE</th>
<th>COUNTRY</th>
<th>PARTICLE</th>
<th>MAX. CLINICAL ENERGY (MeV)</th>
<th>BEAM DIRECTION</th>
<th>NO. OF TREATMENT ROOMS</th>
<th>START OF TREATMENT PLANNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTC, Munich*</td>
<td>Germany</td>
<td>p</td>
<td>250 SC cyclotron</td>
<td>4 gantries, with scanning, 1 horiz.</td>
<td>5</td>
<td>2007</td>
</tr>
<tr>
<td>PSI, Villigen*</td>
<td>Switzerland</td>
<td>p</td>
<td>250 SC cyclotron</td>
<td>Additional gantry, 2D parallel scanning, 1 horiz.</td>
<td>3</td>
<td>2007/08 (OPTIS2/Gantry2)</td>
</tr>
<tr>
<td>NCC, Seoul*</td>
<td>Korea</td>
<td>p</td>
<td>230 cyclotron</td>
<td>2 gantries 1 horiz.</td>
<td>3</td>
<td>2007</td>
</tr>
<tr>
<td>CNAO, Pavia*</td>
<td>Italy</td>
<td>p, ion</td>
<td>430/u synchrotron</td>
<td>1 gantry? 3 horiz. 1 vert</td>
<td>3-4</td>
<td>2009?</td>
</tr>
<tr>
<td>Heidelberg/GSI</td>
<td>Germany</td>
<td>p, ion</td>
<td>430/u synchrotron</td>
<td>1 gantry, raster scanning, 2 fixed beams</td>
<td>3</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gunma Univ.</td>
<td>Japan</td>
<td>ion</td>
<td>400/u Synchrotron</td>
<td>1 vert+holiz., 1 vert 1 horiz.</td>
<td>3</td>
<td>2009</td>
</tr>
<tr>
<td>Takasaki, Gunma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fukui</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minami Tohoku Hosp.</td>
<td>Japan</td>
<td>p</td>
<td>synchrotron</td>
<td>1 vert 2gatry</td>
<td>3</td>
<td>Autumn 2008</td>
</tr>
</tbody>
</table>
Hadron Therapy Simulation

Wobbling field

Lead Scatter

Flatness Monitor

Main Monitor

Multi-Leaf Collimator

Block Collimator

Ridge Filter

Secondary Monitor

Water Phantom

HIBMC Gantry (Hyogo)
Visualized by gMocren
http://geant4.kek.jp/gMocren
Boost Simulation Speed

• Massive computing power is required for precise simulation.
 – typical situation of hadron therapy simulation;
 • 1M events/~3days @ Pentium-4 3.0GHz processor

• Parallelization on local PC cluster
 – Event level parallelism has been implemented using MPI.
 – We can get performance gain almost linear to # processors.

• Distributed analysis on GRID
User Model in Medical Application

User model in medical applications is different from HEP:
- Set parameters
- Inquiry resource information
- Job queuing and logging
- Job submission, management, monitoring
- Inquiry resource information
- Job queuing and logging

- Limited applications w/ different parameter sets
- Support for non-GRID users
- Closed (secure) network environment

- Independent of physical location of files
- Replication and transfer automatically

- Based on GSI
- Across the institutes

Grid Web UI

Resource Broker
- Get and browse results
- Job queuing and logging

Network Server
- Match Maker
- Information Supermarket

Task Queue
- Match Maker
- Information Supermarket

Virtual Organization
- Based on GSI
- Across the institutes

Site-A Globus I/F
- WMS
- WN

Site-B Globus I/F
- WMS
- WN

Site-C Globus I/F
- WMS
- WN

File Catalogue
- Independent of physical location of files
- Replication and transfer automatically

User Model in Medical Application
Grid Web Portal for Medical Application

• We will provide web interface as an easy-to-access way to GRID resources.
 – managing GRID jobs across firewalls
 • Intra-networks of universities/hospitals are closed under firewalls in most cases.
 – Users applications are served as Web applications
 • fixed application (hadron therapy simulation) changing different parameter sets

• Note:
 – Potentially, a toolkit for constructing GRID web applications
Structure of GRID Web Interface

Implemented in PHP

User Applications

GRID access

GRID middleware
 glite/LCG

✓ user login
✓ input parameters
✓ show results

✓ issue of proxy certificate
✓ job submission / monitoring
✓ post-process for job outputs

WEB SERVER

UI node

Storage Element
GRID Access Layer

- Implemented in *PHP*.
- GRID API/commands are wrapped out:
 - issue of proxy certificates
 - *xxx-proxy-init/info/destroy*
 - job management
 - submission/cancellation
 - *xxx-job-submit/xxx-job-cancel*
 - job monitoring
 - *xxx-job-status*
 - post-process for job outputs
 - merging job outputs (histogram, etc.)
 - collection/replication of results
 - *xxx-job-get-output, lfc-xxx, lcg-cp, lcg-cr, etc.*
GRID Access Layer (Cont.)

• HTML generation
 – showing information of proxy / Grid resources
 – for submitting / monitoring jobs

• Note:
 – Currently, users’ certificates are supposed to be uploaded on the UI node (web server).
 – Hopefully, this should be improved, so that users certificates imported in a web browser can be used.
Proxy / Grid Resources Information

![Proxy / Grid Resources Information](image-url)
Job Monitoring
Job Status and History

![Job Status and History](image)

KEK GRID Web UI

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Start Time</th>
<th>End Time</th>
<th>Status</th>
<th>Job Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>000019</td>
<td>Mon Feb 19 09:03:25 2007</td>
<td></td>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>000046</td>
<td>Mon Feb 19 09:03:32 2007</td>
<td></td>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>000057</td>
<td>Mon Feb 19 09:03:39 2007</td>
<td></td>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>000065</td>
<td>Mon Feb 19 09:04:29 2007</td>
<td>Mon Feb 19 09:05:27 2007</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>000065</td>
<td>Mon Feb 19 09:04:34 2007</td>
<td>Mon Feb 19 09:05:27 2007</td>
<td>Done</td>
<td></td>
</tr>
</tbody>
</table>

KEK Grid Technology Accelerator Research Organization KEK (2007) Japan Science and Technology Agency
Web User Application

- **Input parameters**
 - Facility
 - HIBMC/NIRS-IHI/NCC-East/… (Japanese facilities)
 - Geometry (beamline modules)
 - collimator/wobler magnet/scatterer/range shifter/ridge filter/MLC/…
 - Target
 - water phantom / human body (DICOM)
 - Beam condition
 - beam energy/beam spread
 - Simulation parameters
 - physics lists
 - cut values

- **Outputs**
 - ROOT file
 - Dose distribution
 - GDD file
 - CT image w/ dose map
 - ...
Current Status & Future Prospects

• Medical application of Geant4 and GRID
 – MC-based dose calculation system in radiotherapy requires large amount of computing power.

• Gridification is a solution to boost simulation speed.
 – We are developing an easy-to-use web portal for hadron therapy simulation on a GRID environment,
 • providing a secure and efficient way of distributed analysis in the context of GRID technology.
 – We will improve functionality/usability.
 • migration of user applications
 • DICOM file sharing
 • use user certificates in web browsers (instead of uid/passwd)
Side project

• Education application
 - Course material on radiology and particle physics
 - web based application
 - Not yet GRIDaware