GRID activities and future plan at KEK

Takashi Sasaki
KEK Computing Research Center
Basic strategy

• GRID deployment and operations for projects at KEK
 – Belle, J-PARC, ILC and so on

• LHC regional center
 – Univ. of Tokyo is operating tier-2, but no tier-1 in Japan
 – Preparing for future tier-1 level GRID center operation at KEK toward ILC
 • Depends on the decision of the society
 • Technical assessments and staff training

• University support
 – Help for deployment and operations of LCG at universities outside of WLCG

• NAREGI
 – Our human resource is very limited and we want to depend on the operation infrastructure of NAGEI if possible
 – Would help university people and non-HEP users
INTRODUCTION
High Energy Physics in Japan

- Major High Energy Activities in Japan
 - Terminated in the last FY
 - K2K Experiment at Kamiokande and KEK
 - Active Experiments
 - Belle Experiment at KEK
 - KamLAND at Kamioka
 - CDF at FermiLab/USA
 - Under construction
 - J-PARC
 - T2K Experiment at Tokai and Kamioka
 - ATLAS and ALICE at LHC
 - Future Plan
 - SuperB Factory
 - International Linear Collider (ILC)
 - HEPnet-J:
 - KEK provides the network facility, NEPnet-J, on the SINET/SuperSINET (NII).
J - PARC (Tokai)

J-PARC = Japan Proton Accelerator Research Complex

Joint Project between KEK and JAEA

- **Linac (330m)**
- **3 GeV Synchrotron (25 Hz, 1MW)**
- **50 GeV Synchrotron (0.75 MW)**
- **Materials and Life Science Experimental Facility**
- **Hadron Beam Facility**
- **Neutrino to Super-Kamiokande**
Introduction to KEK Super-Kamiokande Neutrino Experimental Facility

J-PARC (T2K Experiment)

295 km West

Super-Kamiokande
KEK (Tsukuba site)
KEKB $e^+ e^-$ Collider

Belle Experiment
13 countries, 57 institutes, ~400 collaborators

Observation of CPV in the B meson system

$B^0 \rightarrow J/\psi K_S$

$B^0 \rightarrow J/\psi K_S$
LCG
Brief Summary of GRID Deployment

- 2 sites are in operation
 - Deployed in different network logically
- JP-KEK-CRC-01
 - Since Nov 2005
 - Usage: experimental use and R&D, but production in LCG framework
- JP-KEK-CRC-02
 - Since Jan 2006
 - More stable services based on experience at KEK-1
- NAREGI
 - Using NAREGI beta1 released on May 2006.
 - Testing, evaluation, requirement assessment
- Accepted VOs are
 - belle
 - ppj
 - ilc, calice
 - g4med
 - dteam, ops
 - naokek (The same VOMS is used for NAREGI)
 - apdg
VOMS operated at KEK

- VOMS has been serviced in production since Sep 2006.
 - Tested from Nov 2005.
- VOMS support the VO for
 - **BELLE**: Belle Experiments (belle only registered in CIC)
 - The biggest target for us
 - **PPJ**: Accelerator Science in Japan
 - **G4MED**: Geant4 Medical Application for Radiotherapy
 - **NAOKEK**: Interpretational VO between National Astronomical Observatory of Japan and KEK
 - **APDG**: The R&D of Data Grid among Asia-Pacific region
 - **ATLASJ**: The ATLAS Experiment only for Japanese Group
 - **AIL**: Associated International Laboratory between KEK and France

http://voms.kek.jp
BELLE: The VO for the Belle Exp.

- Belle VO is federated among 5 countries, 7 institutes, 10 sites.
 - Nagoya University, University of Melbourne, ASGC, NCU, CYFRONET, Korea University and KEK
- VOMS is provided by KEK
 - http://voms.kek.jp/

- Past Activities
 - Federation was established
 - Library installation
 - Submitting MC production job for more realistic use
 - Long-term jobs, MC is taken ~1 week usually
 - Functional tests and performance tests over the VO
 - Interface to existing peta-bytes of data
Integration of existing storage using SRB-DSI

- A user can access by just using GridFTP client from outside
 - SRB client can access HSM also from inside.
 - Benefit for both SRB user and LCG user
 - Both user can read and write from/to HSM without considering protocol.
- Both protocols are authorized by GSI

Computing Farm
Still not integration with Grid
ILC/CALICE: The VO for Linear Collider Exp.

- ILC/CALICE VO is supported at KEK
 - Since end of 2006
- File sharing/transfer among DESY, IN2P3 and KEK over the VO
- ILC
 - Number of cores: 32,793
 - SPEC: 35,384 kSI2K
 - Storage: 68.4TB (12.6TB in use)
 - Members: 69 (4 from Japan)
- Calice
 - Number of cores: 13,469
 - SPEC: 15,140 kSI2K
 - Storage: 203TB (15.6TB in use)
 - Members: 52 (3 from Japan)
- KEK offer small resource
Operation statistics in Last 2yrs

ILC
- Number of Jobs: 150,269
 - 955 of 150,269 has been processed at KEK-1/2
- 323,251 CPU time normalized by 1kSI2K (hrs*kSI2K)
 - 569 of 323,251 has been used at KEK-1/2

CALICE
- Number of Jobs: 145,776
 - 579 of 145,776 has been processed at KEK-1/2
- 338,531 CPU time normalized by 1kSI2K (hrs*kSI2K)
 - 1,061 of 338,531 has been used at KEK-1/2
To do lists relating LCG

- CE and WN
 - Migration to SL4 (WN, lcg-CE)
 - Queue settings
 - Always occupied by jobs, sometime jobs from ops are expired
 - Job scheduler
 - LSF is the standard job scheduler at KEK
 - Necessary to share resources with local user and grid user
 - Maui is not satisfactory
- SE integration
 - HSM integration
 - Currently only disk in use
 - HPSS-DSI became ready and under testing
 - We are using DPM/SRM as a head node of SE
 - Keep the contact with application team at ASGC
 - SRB-SRB is desirable
- Networking/Security
 - KEK has very tight network security policy (aka, not GRID friendly)
 - Always tradeoff relationship between convenience and security
 - Always important subject how to manage easily and quickly with security assurance
 - Network bandwidth/throughput
 - Higher throughput between CC-IN2P3 and KEK/CRC is requested
- More robust and higher performance services
 - Using VM
 - Redundant design
Prototype of GOC

- Federated among major university groups and KEK in Japan.
 - Tohoku-U (KAMLAND, ILC)
 - Tsukuba-U (CDF)
 - Nagoya-U (BELLE, ATLAS)
 - Kobe-U (ILC, ATLAS)
 - Hiroshima-IT (ATLAS, Computing Science)
- We have a common VO, but do NOT depend on scientific projects.
 - To test each site.
- KEK assists their operation over the this VO
 - same motivation with ops VO

KEK behaves as the GOC
- Remote installation
- Monitoring
- Software updates

<table>
<thead>
<tr>
<th></th>
<th>Tohoku U</th>
<th>KEK</th>
<th>Tsukuba U</th>
<th>Nagoya U</th>
<th>Kobe U</th>
<th>HIT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (kSI2K)</td>
<td>0.68</td>
<td>91</td>
<td>5.1</td>
<td>8.3</td>
<td>8.5</td>
<td>1.2</td>
<td>115</td>
</tr>
<tr>
<td>SE (GB)</td>
<td>150</td>
<td>2,676</td>
<td>65</td>
<td>150</td>
<td>68</td>
<td>36</td>
<td>3,145</td>
</tr>
</tbody>
</table>
Monitoring System for our GOC

Monitoring Portal
- The monitoring system based on nagios and wiki
- The monitoring portal creates a link automatically based on knowledgebase and navigates administrators to appropriate troubleshooting page on wiki.

Summary view: Each site is iconified and shown their status as a few color, e.g., yellow show “warning”, red show “error”. The thickness and color of line indicates RTT and network status.

Support system: consists of “monitoring system” and “knowledge DB” and “FAQ by wiki”

Monitoring system: The site status is checked by a few simple jobs or commands, and is listed here. Link to FAQ is generated as to error description.

Strongly inspired ASGC NAGIOS Monitoring Service maintained by Joanna Huang, APROC
NAREGI
• NAREGI: NAAtional REsearch Grid Initiative
 – Foundation: 2003-2007 10 billion Yen for 5 years
 – Host institute: National Institute of Infomatics(NII)
 – Core collaborations: IMS(molecular science), AIST(industrial app.), TIT, Osaka, Hitachi, Fujitsu, NEC

• Mission:
 – R&D of the Grid middleware for research and industrial application toward the advanced infrastructure
 – Primary target application is nano technology for innovative and intelligent materials production.
 • More focused in the computing grid for linking supercomputer centers for coupled simulation of multi-scale physics
 • Support heterogeneous computer architectures (vector & super parallel & clusters)
 • Data grid part were integrated in 2005
NAREGI β2 status

• Released in Oct. 2007, revised in Jan. 2008
• Additional features to β1 version
 – Auto installation with apt-rpm
 – Provides script for operation (Full Server start/stop/restart/status)
 – Full VOMS integration
 • Resource Sharing with multi VO’s
 • Data access and data space management with the VOMS
 – Provides Gfarm-DSI: GridFTP interface of the DataGrid
 – Improved performance
 – Interoperation with gLite/EGGE (not released yet, internal evaluation process)
NAREGI-β at KEK

• Testbed: 9 server nodes + 5 compute nodes
• Middleware installation
 • Manual installation for all the steps
 • Confirmed functionalities of Information Service, PSE, WFT, GVS
 – NAREGI-beta 1.0.2 : Feb 2007
 • DG comprehensive installation manual was released in Jan. 2007
 – NAREGI-beta 2.0.0: Oct. 2007 apt-rpm installation
 – NAREGI-beta 2.0.1: Dec. 2007

• Site federation test
Testbed for NAO-KEK federation
March 2008

User Browsers

NAO Site

Portal
SS
IS-NAS
IS-CDAS
GridVM Ser
MDS
AMS
Gfarm
NAT/DNS
UMS/VOMS

Comput nodes

SINET3

FireWall

KEK Site

Private network

192.168.2.101~

GridVM Eng

SuperSched
Infosys-NAS
Infosys-CDAS
GridVM Serv
MDS
AMS
Gfarm
Gfarm Storage
NAT/DNS
UMS/VOMS

DataGrid part

Test VO: naokek

VOMS/KEK

User Browsers

Compute nodes

User Browsers
Federation Test with NAO
(National Astronomical Observatory)

• **Aim:** Evaluation of application environments of NAREGI
• **Test Applications**
 – NAO: JVO(Japanese Virtual Observatory) applications
 – KEK: HEP Data Analysis, ex Belle simulation
 Geant4 MPI simulation
• **Status:**
 – NAO installed NAREGI β2 in the testbed Feb. 2008
 (DataGrid part is not yet installed.)
 – Test VO: naokek hosted by KEK VOMS server/gLite
 – Simple Job submission and retrieve were successfully tested in the end of March
 – Remote data file staging-in/-out has been confirmed.
 – Astro application job has been submitted to KEK site and retrieved the result to post-process for visualization. Apr. 2008
Federation Test with NAO-KEK

- Setup Astro Libraries at KEK site
- Job submission to KEK with Work Flow Tool (WFT) at the NAO Portal
- Input data are transferred from NAO and Output data are staged-out to NAO portal

- Output data was processed with vis. software as shown in the right picture.

SUBARU Telescope in Hawaii

Input Data: (2.7 GB)
10 CCD mosaic images
160MB x 17

Process: 10 Hours
- sensor calibration
- adjust deformation
- positioning
- mosaicing
- summing 17 frames

Visualization

50,000 objects identified in this frame.
Test of data storage with Gfarm

- **DataGrid part is consist of Gfarm distributed file system**
 - data files are stored in the multiple disk servers under the Gfarm file system software

- **Input and output data are staged-in and staged-out to the Gfarm storage.**
 - confirmed within KEK site and between KEK and NAO site

- **GridFTP interface supported in the β2**
 - data file transfer tested between gLite site and NAREGI site
 - File name space is the same between TURL and Program IO(using Gfarm-Fuse) as shown in the next slide.

- **Data file access from application program**
 - Gfarm client installed in the Engine nodes (Worker nodes) with FUSE
 - User can mount the Gfarm file system in the job by user privilege
 - Get access the data file through program read/write directly with no change in the application program (Belle event simulation), as if local files.
 - IO speed is several times slower than the local disk file IO. Tolerable depending on the data IO portion in the application program.
DataGrid: Gfarm File access

- Data Staging
- File transfer
 - Grid FTP
- Program IO
 - with Gfarm Fuse
 - Data analysis program can read/write data files without any modification

Transfer URL through Gfarm-DSI:
gsiftp://nrg11.cc.kek.jp/gfarm/user01/data1-22.dat

Program access name space for VO:
/gfarm/user01/data1-22.dat
Test Applications

- **Data Analysis program**: Carbon Ion Scattering in the water measured with Emulsion at 150 MeV, 300MeV
 - Data analysis program (written in ruby)
 - Input data was in the Gfarm and analyzed data were stored in the Gfarm files and also transferred to the SRB storage with Grid FTP
 - Typical elapsed time of a job is about 2 hours.

- **Geant4 Simulation with MPI**
 - Parallel processing Geant4 simulation with GridMPI of NAREGI has been test on the b1.

- **Belle event Simulation**
 - Full simulation softwares with libraries and database are installled and tested successfully in KEK site.
 - Plan to inter-operate with gLite/EGEE belle VO

- **SUBARU telescope image enhancement**
Data Grids Installation at KEK

2007.2.9

Naregi-kek

gLite/EGEE

gLite/ CRC-01

gLite/ CRC-02

SRB-DSI

SRB server

SRB files

SRB MCAT

CPUs

Local files

Grid files

HPSS
Future Plan on NARGI at KEK

- Migration to the production version
 - Release of NAREGI v. 1.0 will be in May 2008
- We will cooperate with Grid Operation Center in National Institute of Informatics
 - Planned to be started the operation JFY2008
- Multi site federation test with full specification will be done
- KEK leads improvement of the middleware in the application domain
OTHER ACTIVITIES
KEK Grid CA

- KEK Grid CA has been started since Jan 2006.
 - 75 CAs are in production all over the world, 3 in Japan.
 - AIST, NAREGI, and KEK
 - accredited as an IGTF (International Grid Trust Federation) compliant CA

- KEK Grid CA has been audited by Yoshio Tanaka (chair of APGridPMA), AIST on May 2007

KEK Grid CA: Statistics of Issued Certificates

<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>JFY2006 Apr 2006 - Mar 2007</th>
<th>JFY2007 Apr 2007 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globus Client Certificate (Personal cert.)</td>
<td>68</td>
<td>119</td>
</tr>
<tr>
<td>Globus Server Certificate (Host cert.)</td>
<td>139</td>
<td>238</td>
</tr>
<tr>
<td>Web Server Certificate</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

http://gridca.kek.jp
RNS

• Middleware independent file catalogue is strongly desirable to operate multi-middleware and share data
 – Robustness and scalability are issue
• RNS: Resource Naming Service is standardized at OGF already
 – Two independent implementations are going on
 • U. of Tsukuba
 • University of Virginia
• We have requested NAREGI to support RNS
iRODs

- We are waiting for iRODs becomes matured enough to replace SRB
- Small contribution to the development
 - https://www.irods.org/index.php/Performance
 - People at iRODs workshop had seen
 - Collaboration with Adil Hasan (RAL, UK) and Jean-Yves Nief (CC-IN2P3)
GRID interoperability

• gLite and NAREGI interoperability is our great concern
 – Discussion and collaboration with the NAREGI team
 • GIN
 • Data GRID
 – Collaboration with CC-IN2P3, Lyon
 • NAREGI has been installed at CC-IN2p3
SUMMARY AND ACKNOWLEDGEMENTS
Summary

• Many kinds of GRID middleware have been deployed and in operation
 – Related R&D is also going on
• Future strategy for the regional center will be decided by the Japanese HEP society
 – Super B, T2K, ILC, LHC and etc.
• In our experience, human network is much more important than computer network. We thank Simon and his staff for their efforts to provide us the opportunity every year.
 • We thank ASGC for their great support on the LCG operation
Acknowledgement I

- **Daily operation**
 - All members of APROC (ASGC)
 - All of ROCs
 - K. Ishikawa, M. Matsui (ISE Co., Ltd)

- **Belle virtual organization**
 - K. Inami, M. Kaga (Nagoya Univ.)
 - P. Lason (CYFRONET)
 - J. Shih, M. Tsai (ASGC)
 - M. Rosa, G. Moloney (Univ. of Melbourne)
 - S. Lee (Korea University)

- **ILC/Calice virtual organization**
 - R. Poeschl (LAL)
 - A. Miyamoto (KEK)
 - People in DESY-IT

- **Accelerator Science**
 - M. Fujii, Y. Nagasaka (Hiroshima-IT)
 - J. Ebihara, K. Yamada (Soum Co., Ltd)
 - Y. Takeuchi (Univ. of Tsukuba)
 - K. Kawagoe (Kobe University)
 - T. Nagamine (Tohoku Univ.)
Acknowledgements II

• Some part of works are partly supported by CSI Program of NII

Research Organization of Information and Systems

National Institute of Informatics