InterOperability among Grids: A Case Study with GARUDA & EGEE Grids

Shamjith K. V.
shamjithkv@cdacb.ernet.in

Asvija B., Sridharan R., Prahlada Rao BB., Mohanram N.

System Software Development Group (SSDG)
Centre for Development of Advanced Computing (C-DAC)
C-DAC Knowledge Park, Bangalore India
http://www.cdac.in
Outline

- Interoperability definition and needs
- Introduction to GARUDA
- Component comparisons: GARUDA Vs EGEE
- Interoperability frameworks
 - Security Interoperability
 - Information System Interoperability
 - Job Submission Interoperability
 - Data Management Interoperability
- Conclusion
Grid Interoperability

Definition of Grid Interoperability
- Ability of Components in a Grid to communicate and share, information and data to peer components in different Grids.

Need for Grid Interoperability
- Evolution of Customized Grid Middlewares
 - Globus Toolkit
 - Glite
 - Unicore
 - Gridbus
 - Legion
- Unifying Grids to address challenging scientific problems
 - Particle analysis, Disaster management & Protein folding
- Grid applications portability
 - Enforcing common standards (OGF)
GARUDA Grid
GARUDA Overview

• National Grid Computing initiative by the Dept. of IT, Govt. of India in November 2004

• Objectives
 – Create a test bed for the research & engineering of technologies, architectures, standards and applications in Grid Computing
 – Bring together all potential research, development and user groups to develop a national Grid Computing Infrastructure
 – Create the foundation for the next generation grids by addressing long term research issues in grid computing

• GARUDA Resources & Connectivity
 – More than 400 CPUs and 13TB of storage
 – Connects 45 organizations across 17 cities
 – Provide seamless & high speed access to the compute, data & other resources on the Grid
 – Scalable, secure and reliable network private network
GARUDA Grid Architecture

Submit node gridfs

GARUDA HeadNode
Bangalore

C-DAC Bangalore
AIX

Chennai
Linux

Pune
Linux

C-DAC
(Hyd)
Linux

IGIB
Linux

RRI-Bangalore
Linux

Cluster Head Node

Compute Nodes

Compute Nodes
GARUDA Components

Management & Monitoring
- Paryaveekshanam

Resources
- Compute, Data Storage,
 Scientific Instruments,
 Softwares

Resource Management & Scheduling
- Moab from Cluster Resources
- Load Leveler, Torque, LSF, SGE
- Globus 2.4

Application (PoC)
- Disaster Management
- Bioinformatics

Access Methods
- Access Portal
- Problem Solving Environments

Data Management
- Storage Resource Broker

Development Environment
- DIViA for Grid
 GridIDE
GARUDA Access Methods

GARUDA Portal
- User-friendly web portal for GARUDA
- Support submission of Jobs such as
 - Sequential Applications
 - Homogeneous Parallel Applications
 - Heterogeneous Parallel Applications
- Facilitate seamless integration of the Grid Meta Scheduler, Middleware, and Data Grid solutions
- Satellite & Terrestrial Grid Integration APIs
- Facilitate Semantic Search

Tools Interface
- MOAB Grid Scheduler
- Globus Middleware
- Storage Resource Broker (SRB)

Program Solving Environments
- Supports the entire cycle of problem solving for specific application domains
- Currently Bio-informatics and Atmospheric Modelling PSEs
Objectives

- Monitor resources of GARUDA Grid & send alerts / notify for malfunctioning of resources.
- Resources are dynamic and critical in nature and
- Monitoring is an essential for heterogeneous distributed environment like GARUDA
- Paryavekshanam is a 24X7 grid-monitoring tool

Paryavekshanam Features

- Search facility for Resources & SW
- Parya Dashboard, Nodal, and Grid Overview pages
- GOC Desk page for the daily graphs
- Alert messages Gen for resource failure
- Addition of new sites is through web page
- Archival of Historical data
- Job monitoring & Accounting: jobs-running/cluster, job_id, job_name, state, Cpu_time, wall_time, memory used etc
- Archival of completed jobs
- SRB monitoring using APIs
- Home page with radar graph
- Nodal Information and grid overview page
- Network, data gallery, network monitoring
Grid Integrated Development Environment (GIDE)

Components of GridIDE
- Project Development and Management
- Resource Management
- Job Management
- Inbuilt source level Debugger
- Profiler
- Help

Features for next GridIDE
- Support web services
- Job submission through GARUDA Portal APIs
- Resource Management using GRIDMON database
- Accounting information
Applications Tested on GARUDA

- **Disaster Management Application**
 - Analyze disaster affected areas using SAR radar data, process it to take corrective actions.
 - Mosaic Data, and enable remote Visualization

- **Bio-informatics Application**
 - Smith-Waterman grid portal being deployed on GARUDA Grid
 - **Prototype tested across Bangalore, Pune, Hyderabad & Chennai Clusters**
 - Grid Enable popular applications like BLAST
GARUDA Grid Security

• Authentication
 - GARUDA Certificate
 • Subject Name
 • Public Key of the Subject
 • Identity of GARUDA CA
 • Digital Signature of GARUDA CA
 - Adheres to GSI
 • Credential Delegation
 • Single Sign-On

• Authorization
 - User Mapping
 - DN to Pool of Unix accounts

• MOAB
 - Uses GSI FTP for data transfer

• SRB
 - Relies on separate SRB credential
 - Not integrated with GSI

• GARUDA CA
 • Managed by C-DAC
 Bangalore
 - Key length 1024 bits
 - Not recognized by IGTF
 - Registration through PURSE
 - http://gridfs.ctsf.cdac.org.in/purse/

• Indian Grid CA
 - Preliminary document is under review and will be submitted to APGrid PMA
 - Key length 2048 bits
GARUDA Information System (GIS)

- Depends on Globus MDS
- Easy querying & publishing
 - Hierarchical approach
 - GRIS: Resource level
 - GIIS: At site level and Grid level
- Follows MDS Core schema, can support GLUE Schema
- Integrated with Ganglia
 - Cluster level information
- GARUDA Grid Monitoring (Paryavekshhanam)
 - Relies on data from MDS
GARUDA - Job Submission & Management

• Globus GRAM
 - Gatekeeper in GT 2.4
 - Supports Parallel MPI Jobs
 - DUROC Component
 - Integrates well with Torque, PBS

• Moab Workload Manager
 - A policy based job scheduler
 - Advanced Reservations
 - Uses GSI FTP : To support Data Transfers

• Local Schedulers-GARUDA
 - Torque - Linux Clusters
 - LSF - Linux clusters
 - Load Leveler- AIX Cluster
 - Torque-Aix Cluster (in progress)
 - SG Engine – Solaris Cluster
GARUDA - Data Grid Solutions

- **Storage Resource Broker (SRB)** - Data grid middleware
- **SRB Components**
 - **MCAT server:**
 - Main repository of the information about the SRB federation
 - Contains all the metadata about all the SRB objects
 - **SRB server (Agent):**
 - Simple daemon running at each site and manages the local resources to present them to SRB federations
 - Agent can process the requests after getting metadata from the MCAT server.
 - **SRB Clients:**
 - Web and Java clients, APIs (C & Java) & Command line utilities (Scommands)
 - **Gateways:**
 - NFS Gateway
 - GridFtp Gateway
 - SRB API
Overview of EGEE

• Project for **Enabling Grids for E-Science**
 – Facilitate collaboration among research & engineering communities world wide

• Funded by European Commission

• Target applications
 – High energy physics, life science, Geology, computational chemistry etc.

• Based on **Glite** Middleware
Glite - Service Components

Access

- **CLI**
- **API**

Security Services
- Authorization
- Authentication
- Auditing

Data Services
- Metadata Catalog
- File & Replica Catalog
- Storage Element
- Data Movement

Accounting
- Job Provenance
- Computing Element
- Package Manager
- Workload Management

Information & Monitoring Services
- Information & Monitoring
- Service Discovering
- Network Monitoring

Job Management Services
- Job Management

Middleware Components: GARUDA Vs EGEE

- **GARUDA INDIA**
 - GSI + gridmapfile
 - MDS
 - SRB

 PORTAL
 - MOAB
 - GLOBUS
 - GARUDA-CE (GT2 based)
 - WMS
 - lcg-CE (GT2 based)

 UID
 - BDII
 - GSI + VOMS
 - LFC
 - SRM

 PBS, LSF, SGE, TORQUE
 - WN-1
 - WN-2
 - WN-n

- **EGEE**
 - Lightware: Middleware for Grid Computing

- **GSI**

- **MOAB**

- **GLOBUS**

- **GARUDA-CE** (GT2 based)

- **WMS**
 - lcg-CE (GT2 based)

- **BDII**

- **GSI + VOMS**

- **LFC**

- **SRM**

- **Linux + AIX**
Security Components: GARUDA Vs EGEE

• GARUDA
 - GSI for authentication
 - Authorization based on Grid-map file
 • DN is mapped
 - Key length is 1024
 - CA not recognized internationally

• EGEE
 - GSI & VOMS for authentication
 - Authorization based on Grid-map file
 • VOMS Attrib is mapped
 - Key length is 2048
 - Recognized by IGTF
Access Methods: GARUDA Vs EGEE

• GARUDA
 - Through GARUDA Access portal
 - Job submission, monitoring and management interfaces
 - Browse GARUDA resources
 - Integrated with GARUDA Data Grid
 - Integrated with GARUDA PSE

• EGEE
 - Command line UI
 - Exposes client APIs
 - Support Grid Portals
 • GENIUS, P-GRADE
 - Job submission, monitoring & management commands
 - Commands to list & search resources
 - Integrated with EGEE Data Grid
Meta Schedulers: GARUDA Vs EGEE

GARUDA
- MOAB as the Meta Scheduler
- Resource Brokering & Scheduling
- Supported LRMS
 - PBS
 - Torque
 - Load Leveler
 - LSF
 - SGE
- Its own logging & book keeping

EGEE
- WMS as the Meta Scheduler
- Resource Brokering & Matchmaking
- Supported LRMS
 - PBS
 - Torque
 - SGE
 - LSF
- Logging & Book keeping
Computing Elements: GARUDA Vs EGEE

- **GARUDA**
 - Operating Systems
 - Linux (RHEL), AIX
 - LRMS
 - PBS, Torque, Load Leveler, LSF, SGE
 - LB Host – part of Moab
 - Software installed are published into IS.

- **EGEE**
 - Operating System
 - Scientific Linux
 - Initiatives to support to other OSs (Linux and non Linux)
 - LRMS
 - PBS, Torque, SGE, LSF
 - Software availability can be VO specific and advertised in IS
GARUDA Vs EGEE : Storage Element

GARUDA
- Storage Resource Broker (SRB)
 - Provide a unified name space across the grid
 - Require SRB credentials
 - Web, Java Clients
 - Exposes API’s (C, JAVA)
 - Command line interface
 - Supports file replication
- GridFTP can be used to transfer files

EGEE
- Storage Resource Manager (SRM)
 - Shared storage resource allocation
 - Integrated with GSI
 - Command line interfaces
 - Supports file replication
 - Exposes API’s (C, Perl)
- GridFTP is used to transfer files
- Namespace Management catalogs
 - LFC, AMGA
Information Service: GARUDA Vs EGEE

• GARUDA
 – Based on Globus MDS 2
 – GIIS at Site level & GRIS at resource level
 – Hierarchical approach
 – GLOBUS Schema, can support GLUE Schema v1.1
 – MDS APIs

• EGEE
 – Evolved version of Globus MDS
 – GRIS at resource level & GIIS at site and higher levels implemented through BDIIIs
 – Hierarchical approach
 – Follows GLUE Schema (v1.3)
 – BDII APIs
InterOperability Frameworks: GARUDA & EGEE

A possible advanced scenario
Security Interoperability : GARUDA & EGEE

- Both Grids follow GSI for security
- GARUDA users get certificates from Internationally recognized CAs
- Authentication
 - GARUDA can trust certificates signed by EGEE CAs
 - Proxy credential in the VOMS proxy can be used for Authenticating EGEE users in GARUDA
 - EGEE can recognize Garuda users as VO users (euindia)
- Authorization
 - GARUDA relies on grid-mapfile for authorization
 - EGEE users DN will be mapped to local users in GARUDA resources
 - EGEE Grid should authorize GARUDA users based on their roles
Information Systems Interoperability: EGEE & GARUDA

• GARUDA tools have to validate & extract information from BDII
 – Information specified in Glue Schema
 – Adapter for fetching & processing information from BDII (TBD)

• EGEE needs Info Fetch interface to access GARUDA resource information from GIS
 – GIS is based on GIIS
 – GIIS Information is specified in Glue Schema
 – Info Fetch Interface (TBD)
Job Submission Interoperability: GARUDA to EGEE

- Garuda users submit Job Request (JR) through Grid Portal.
- Grid Portal provide the JR to MOAB/GRAM.
- Match the JR to find suitable resources in EGEE.
 - Information Adapter for Moab to query BDII (TBD)
 - Information Adapter for GRAM to query BDII (TBD)
- Convert JR (with data staging information) to JDL.
 - MOAB/RSL script to JDL Adapter (JDLA-TBD)
- JDL Adapter submits JDL to WMS (TBD)
- Job identifier returned by WMS is taken to Grid Portal for:
 - Status-query and
 - Fetching Job output
Job Submission Interoperability: EGEE to GARUDA

• User makes job request (JR) through Glite UI
 – JDL Scripts
• Glite UI provides the JR to WMS
• WMS Match the JR to find suitable resources in GARUDA
 – Information Adapter for WMS + RB to query GARUDA Information System
• JDL to MOAB/RSL script converter: Generate MOAB/RSL script from JR with data staging information
 – JDL to MOAB/RSL Script Adapter (JMRS Adapter) need to be developed
• JMRS Adapter submits Job to MOAB/GRAM
• Job Details need to be updated in Logging & Book keeping
Data Management Interoperability: EGEE & GARUDA

- Data transfer using GridFTP
 - `globus-url-copy gsiftp://<GARUDA Node>/file`
 - `gsiftp://<EGEE Node>/file`

- Integrate Data Grids (SRB & SRM)
 - SRM interface to SRB (ASGC working)
Conclusion

- GARUDA & EGEE Adapt interOperability models based on OGF
- Adapters, and Converters for interoperability of GARUDA & EGEE (TBD)
 - Adapters for information fetching and converting job requirements
- Applications to be tried for demonstrating interoperability bet’n GARUDA & EGEE
THANK YOU