e-Sciences and the Humanities: Opportunities and Challenges for Grid-based Research

David J. Bodenhamer
The Polis Center

IGCS/Academia Sinica
April 10, 2008
• Digital humanities rapidly achieving distinct status but still amorphous in scope and direction:

“...study of what happens at the intersection of computing tools with cultural artefacts of all kinds....”

Centre for Computing in the Humanities, Kings College, University of London
Digital humanities as product

- Significant e-Resources
 - Text archives
 - Data archives
 - Image archives
- Web-based production and access
• “e-Science is essentially a mode of working that is reliant on a distributed number of computing resources...which can be made to work together for the purposes of one research outcome.”
http://www.methodsnetwork.ac.uk/esceinece/e-science.html
• “… information, expertise, standards, policies, tools, and services that are shared broadly across communities of inquiry but developed for specific scholarly purposes: [it] is...more specific than the network itself, but...more general than a tool or a resource...for a particular project...or...a particular discipline.”

Our Cultural Commonwealth (ACLS Commission on Cyberinfrastructure, 2006)
• Digital libraries
• Initial goals focused on data
 • Creation
 • Access
 • Preservation
 • Exchange
Successes

• Rapid increase in digital materials (Project MUSE, JSTOR, databases, etc)
• On-line access
• Convenient search tools
• Digital archives and repositories (AHDS, D-space, etc.)
• Highly visible projects (Valley of the Shadow, Vision of Britain, etc.)
• e-Science came to mean grid
 Data grid
 Access grid
 Computational grid
• Little demand for computational grid in the humanities
• Now, e-Science means grid-based collaboration
 • Technical collaboration (e.g., networks, exchange protocols, middleware, etc.)
 • Procedural collaboration (e.g., standards for access and use)
 • Scholarly collaboration
 • ICT-discipline or domain collaboration
e-Science for the humanities

• Application of intensive computing technologies and methods to research questions relating to the development of human society.
• Designed to manage and analyze the data deluge brought on by the new digital age in ways that are suitable for the humanities.
• Computer-based collaborations
• Most humanists still in e-Science 1.0 (digital libraries)
• Some humanists are moving into e-Science 1.5
• Few humanists are in e-Science 2.0
• Why?
Understanding the humanities

- Approaches (themes)
- Questions
- Data
- Methods
- Tools
- Culture
• What themes engage modern humanists?
 • Interdisciplinary or multi-perspective
 • Interdependency
 • Intercultural and trans-cultural
 • Multi-scalar and inter-scalar
 • Visualizing complexity
• Modern humanists are interested in
 • Context
 ✦ Non-linear
 ✦ Fuzziness
 • Culture
 ✦ Variation
 ✦ Diffusion
 ✦ Transmission
Most humanities data still non-digital

Wide range of data types

- Archival records
 - Letters, diaries, newspapers, photographs, etc.
 - Government papers, censuses, maps, etc.

- Generated or collected data
 - Surveys, field samples

- Multimedia

- Artefacts
• What methods do they employ?
 • Discipline-based
 - Archival (document based)
 - Fieldwork (ethnography, oral history)
 - Hermeneutics (textual analysis and interpretation)
 - Statistical
 • Fusion
• Most humanists do not use computer-based analytical tools
• Most software used by humanists was not developed with humanities scholarship in mind
• A GIS example: the North American Religion Atlas (www.religionatlas.org)
Most humanists still:

- Work in isolation
- Use traditional methods
- Lack computing skills
- Are not interdisciplinary
Generational shift

- Modern humanities more open to diverse approaches
- Strong shift toward interdisciplinary research
- Quantitative data and methods more common
- More collaborative
e-Science and humanities today

• Digitization
• Use of e-Tools
 • Information management
 • Data integration
 • Textual analysis
 • Statistical analysis
• Visualization
• Framing suitable e-problems
• Evidence
 • Incomplete and missing data
 • Ambiguous data
 • Conflicting typologies/semantic standards
 • Language barriers
 • Legal access
 • Metadata
Other challenges

- Disciplinary knowledge base
 - Theory/models/methods
 - Best practices
- Technology
 - Expensive
 - Steep learning curve
- Too little interaction with ICT experts
More challenges

• Spatio-temporal integration
• Epistemology
 • Nonlinear
 • Non-expert knowledge
• Choice and customization
Humanities grids

- Access Grid
- Resource Grids
 - Data Grid
 - Text Grid (e.g., TextGrid, Germany)
 - Image Grid (e.g., USC Digital Archive)
 - Spatial Grid (e.g., HGIS-Europe)
New collaborations

• DARIAH (Digital Research Infrastructure for the Arts and Humanities, UK)
• Virtual Knowledge Studio (Netherlands)
• CATCH (Continuous Access to Cultural Heritage, Netherlands)
New vision

- New collaboratories that allow
 - Retrieval
 - Contextualization
 - Hypothesis building
 - Flexible narration
 - Integration into knowledge networks
- Virtual Research Environments (VRE)
 - GRID+Web 2.0
Opportunities for humanities grid

- Life paths
- Networks
- Virtual reality
- Gaming
- Simulations
- Deep mapping
The biggest need

• The *human* humanities grid
 • Opportunities for interchange and experiment
 • Creation of knowledge base
 • Development of problem statements
 • Working out of research design
 • Building viable partnerships and a sustainable community