A Desktop Grid Computing Service for Connect6 Applications

I-Chen Wu1, Chingping Chen1, Ping-Hung Lin1, Kuo-Chan Huang2, Lung-Ping Chen3, Der-Johng Sun1 & Hsin-Yun Tsou1

1 Department of Computer Science, National Chiao Tung University, Taiwan
2 Department of Computer and Information Science, National Taichung University, Taiwan
3 Department of Computer and Information Science, Dong Hai University, Taiwan

This paper presents a desktop grid computing architecture for the applications related to Connect6. Since Connect6 was introduced by Wu and Huang (http://www.connect6.org) in 2005, it has become one of tournaments in Computer Olympiad since 2006. The program NCTU6, which won gold twice in Computer Olympiad, was modified into a verifier, named a NCTU6 verifier to verify whether one player wins, and to generate Connect6 opening moves. Since the Connect6 opening generation system consumes huge amount of computation resources and requires on-demand responses, we design a desktop grid computing architecture that provides users with on-demand computing through dynamic resource provisioning. The underlying desktop grid achieves high throughput computing by harvesting the idle CPU time on desktop computers connected to the Internet. A coordinating system is used to effectively manage the resources and distribute the workloads with fast responses dynamically. Efficient workload scheduling methods are discussed and evaluated in this paper.