Grid Application Meta-Repository

- Repository interconnectivity and cross-domain application usage in distributed computing environments -

Alexandru Tudose
Centre for Parallel Computing
School of Electronics and Computer Science
Outline

- Introduction
- Motivation
- Objectives
- Grid Application Meta-Repository System
- Example
- Summary
- **Grid application**: an application executed in a Grid computational environment

- **Repository**: stores objects in a structured manner, following a model defined by the repository administrator. The repository provides functions for classification, storage, management and retrieval of the components stored inside

- **Grid Application Repository (GAR)**: A repository of Grid applications
Motivation

- The number of Grid applications has been increasing rapidly in recent years → Application Repositories became a necessity

- Grid applications are suitable not only for Grid but also for other similar distributed computing paradigms (e.g. cluster computing, cloud computing) and new technologies (e.g. virtualization) → GARs can be operated in connection with other distributed computing technologies
Objectives

- GRID APPLICATION REPOSITORY ARCHITECTURE:
 - connect any type of GAR (different implementation technologies, methods of access and authentication, communication protocols and transport protocols)
 - make applications accessible to other OGSI/WSRF Grid Services
 - expose the applications to web search engines

- GRID APPLICATION REPOSITORY MODEL:
 - uniformity in presentation of Grid applications
 - a comprehensive description of an application along with a suggestion for a new categorization of application-related objects
 - compatibility with newly emerging technologies (virtualization, automatic virtual machine creation, cloud computing and automatic service deployments)
Grid Application Meta-Repository System
Implementation
Implementation

Digital Repository
Application Assets
 › Collection Description

‹ Items in this Collection 1/4 of 4

Installation Notes Source Code Test Suite Virtual Machine

Digital Repository
Source Code

Detailed List of Content

<table>
<thead>
<tr>
<th>Detailed List of Content</th>
<th>View Download</th>
<th>View Download</th>
<th>View Download</th>
<th>View Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dublin Core Record for this object</td>
<td>text/xml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF Statements about this object</td>
<td>application/rdf+xml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thumbnail.png</td>
<td></td>
<td>image/png</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>application/x-tar-gz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMRS Statements about this object</td>
<td></td>
<td>text/xml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<oai_dc:dcterms:identifier>http://www.openarchives.org/OAI/2.0/oai_</oai_dc:dcterms:identifier>
<oai_dc:dcterms:title>Virtual Machine</oai_dc:dcterms:title>
<oai_dc:dcterms:source>
ssh://project26.cpc.wmin.ac.uk/vmtemplates.Template-Bsoft.tar.gz
</oai_dc:dcterms:source>
Implementation

VIRTUAL MACHINE

GAMRS

VM SERVICE

CLOUD / HYPERVERSOR GATEWAY

VIRTUAL MACHINE STORAGE
Implementation
Summary: Architecture

- Connect together any type of Grid Application Repository
- Applications accessible to other OGSI/WSRF Grid Services
- Applications easily discovered through web search engines
- Exchange and reuse application metadata and objects

- Can function as a remote “publisher” for connected repositories supplying different connectivity interfaces for them (e.g. user - web search engine – GAMRS HTTP/REST - NGS AR)
- Architecture can be cascaded, connecting multiple GAMRS architectures → federation; failover; backup
Summary: Repository Model

- **More comprehensive** description of an application than traditional models
- Ability to describe different application **providers**
- **New categorization** of application-related objects: description documents, binaries, source code, libraries, software dependencies, documentation, test suites, licenses, virtual-machines, hash sums

- **New application-related objects** make GAMRS usable in scenarios involving new technologies (e.g. virtualization, cloud computing)

- Ability to store **VM-embedded** applications → deployment made easy: no prior knowledge on OS installation procedures, application installation procedures, software dependencies or configuration of the application
THANK YOU!