“Integrating scientific laboratories into the cloud”

Data Infrastructure Track

Miriam Ney < miriam.ney@dlr.de >
German Aerospace Center
http://www.dlr.de/sc
Overview

- Scientific Work In The Past
 - Paper based notebooks: unstructured notes

- Scientific Work At The Moment
 - Data management system: DataFinder

- Scientific Work In The Future
 - Enhanced Data Management: DataFinder using Grid and Cloud

- Scientific Work Summarized
 - Conclusion of the talk
Scientific Work In The Past
Scientific Work In The Past
Documentation by hand

The principles of Good Laboratory Practice (GLP) have been developed to promote the quality and validity of test data used for determining the safety of chemicals and chemicals products.

OECD Principles on Good Laboratory Practice (as revised in 1997)
Scientific Work In The Past
Problems with data management

Absent organizational structures
- No central data management policy
- Every employee organizes his/her data individually
 → Researchers spend about 30% of their time searching for data
 → Problem with data left behind by temporary staff

Increase of data because of growing size and regulations
- Rapidly growing volume of simulation and experimental data
- Legal requirements for long-term availability of data (up to 50 years!)

Situation is similar for every DLR institute, many research labs and agencies and even for the industry
Scientific Work At The Moment

[Image of a scientific laboratory with equipment and scientists working]

Scientific Work At The Moment
Scientific Work At The Moment

Data management system: DataFinder

Connect to a repository
Scientific Work At The Moment
Features of the DataFinder

- Structuring of data with a data model
 - Restricting the user to a directory layout
 - Forcing the user to enter meta data

- Using heterogenous storage backends, separating meta data storage
 - Best fitting storage solution depending on data
 - Existing resources can be kept
 - Offline storage location are possible

- Extension by scripts
 - Adjusting to your environment
 - Automation of workflow processing
Scientific Work At The Moment
Demo of storing data in the cloud
Scientific Work In The Future
Example 1: Accessing Grid Infrastructure
Fluid Dynamics Simulation

- Design of new turbine engines

- High-resolution simulation of flow
 - Computational Fluid Dynamics (CFD)
 - Use of high-performance computing resources (Cluster / Grid)
 - Huge amounts of data (>100 GByte)

- DataFinder used for
 - Management of results
 - Automation of simulation runs in Grid
 - Starting pre-/post processing
Turbine Simulation: Customized GUI Extensions

1. Create new simulation
2. Start a simulation
3. Query status
4. Cancel simulation
5. Project overview
Example 2: Provenance Integration
Developing a provenance model with PrI\text{Me}

⇒ "The Provenance of a piece of information is the history of its creation"

⇒ Collecting QUESTIONS that should be answered by the system
 ⇒ Which item is the logical predecessor of item X?

⇒ Identifying ACTORS, INPUT and OUTPUT for the questions

⇒ Extracting PROCESSES

⇒ Modeling Processes with OPM
Provenance Aware Application and Provenance Storing System

- **DataFinder**
 - Script watching on import event of document (output)
 - Extracting Process and Input
 - Sending the information to the "Noblivious“ service

- "Noblivious“ Provenance- Service
 - Web Server
 - Graph Database neo4j
 - Rest Interface
 - Storing processes
 - Querying the database
Scientific Work Summarized
Scientific Work Summarized

Conclusion

⇒ DataFinder is used in several scientific laboratories at DLR and other German and international research institutes

⇒ Storing of data in grid and clouds is possible and with DataFinder the scientist does not have to worry about configuration

⇒ Execution of jobs on grids (and clouds) can be integrated/started

⇒ DataFinder can support collecting provenance information of data

⇒ http://launchpad.net/datafinder
Availability

- DataFinder core available as Open Source
 - Current stable release: DataFinder 2.1
 - Simplified BSD License
 - Open Source
 - Launchpad (Code)
 - Sourceforge (Binaries)
 - Freshmeat (Announcement)
Links

DataFinder Website
http://www.dlr.de/datafinder

DataFinder Projectpages
⇒ http://launchpad.net/datafinder
⇒ https://launchpad.net/~datafinder-team
⇒ http://sourceforge.net/projects/datafinder

DataFinder Wiki
⇒ http://wiki.sistec.dlr.de/DataFinderOpenSource
Unterstütze uns:
Werde DataFinder Fan bei Facebook!

DataFinder DataFinder-Vortrag auf der FrOSCon 2010

froscon2010: DataFinder programmed.froscon.org
Der DataFinder ist eine in Python entwickelte Open-Source-Projekt, die unter der Simplified BSD Lizenz, die auch in der wissenschaftlichen Simulation und Versuchen anfallen, zu verweisen. Dabei hilft die konsequente A...

08. Juli um 14:04 • Kommentieren • Gefällt mir • Teilen • Bewerben

Miriam Ney gefällt das.

XEmacs Startbartoast Wird der Vortrag auch per Video aufgezeichnet & zur Verfügung gestellt? Gibt es dazu auch eine Veroeffentlichung oder ein Paper, welches man an andere weitergeben kann, oder verlinken kann?

vor einigen Sekunden • Gefällt mir • Löschen • Melden

Schreibe einen Kommentar ...

DataFinder The face behind DataFinder :) (german)
audimax.de Masterstudium, Berufseinstieg, Studium, Karriere: Komplexe Software sucht Entwicklungshelfer
www.audimax.de

25. Mai um 22:11 • Kommentieren • Gefällt mir • Teilen • Bewerben

DataFinder Last Friday:
DataFinder will be developed further using Launchpad... (Kind of fits for a Software developed by a space agency :)

So check out the project: http://launchpad.net/datafinder
Turbine Simulation
Job Management

- Usage of the abstraction layer JAVA-GAT for job submission
 - Provides a simple API to several grid applications
 - Based on HiLA
 - HiLA(*High-Level API*) supports the access to UNICORE 5 and UNICORE 6 via an easy and unique API.
 - It is not necessary to install components of UNICORE 5 or UNICORE 6 on the submitting (client) host.
- Current implementation allows performance of:
 - Local jobs,
 - Batch systems jobs,
 - UNICORE 5 / 6 jobs.
Turbine Simulation
Job Management Concept

DataFinder Job

Application

TRACE TAU Other

Backend

Grid Application Toolkit (GAT)

local batch Grid
DataFinder: Concepts
Concepts for managing huge Datasets

- **Infrastructure:** Server Client Structure

- **Structuring Data:** Meta Information and Data Models

- **Flexible Resource Usage:** Data Stores

- **Environment Integration:** Extension with Scripts

- **Programming language:** Python

Suitable software for efficient management of scientific and technical data
DataFinder: Concepts
Distributed System

- Client-Server solution
- Based on open and stable standards
- Server:
 - WebDAV server for datamodel and Metadata
 - Data Store concept
- Client:
 - User and Administrator
DataFinder: Concepts
Data Model and Meta Data

- Definition of data structuring and meta data ("data model")

- Stored in XML format

- User can search in meta data

Variation:
- Different levels of meta data
 - Administrator: required attribute:
 - User: additional ones
- Different types of meta data
DataFinder: Concepts
Data Stores

- Abstracting the Users logical view of the server structure
- Separated storage of data structure / meta data and actual data files
- Flexible use of (distributed) storage resources
 - File system, WebDAV, FTP, GridFTP, SVN
 - Amazon S3 (Simple Storage Service)
 - Tivoli Storage Manager (TSM)
 - Storage Resource Broker (SRB)
- Complex search mechanism to find data
DataFinder Concepts: Aggregation

DataFinder User Client

Displays

Logical View of Datalog

Displays and is managed

DataFinder Administrator Client

Core Application

Meta Data Server

Stores

Data Model and Meta Data

Data

Heterogenous Server Environment

Access to

stores
Konzepte des DataFinders

DataFinder Adminstration Client

DataFinder User Client

Meta data
Type = preparation
StartDate = Date
EndDate = Date

Meta data
Type = input

Preparation

Manual
.txt
.pdf
.c

Standard Procedure

Relation

User

Project...

Project A

Experiment...

Simulation

Input File

Output File

Other File

Object (file)

Attributes (meta data)

Specific Adapter

Archiving

Archiving

GridFTP Server

S3 Cloud-Storage System

Tivoli Storage Manager

FTP Server

File System

Storage Resource Broker

WebDAV Server
DataFinder: Concepts
Usage Workflow

Requirements Analysis
⇒ Analyze data, working environment and users workflows

Configuration
⇒ Define and configure data model
⇒ Configure distributed storage resources (Data Stores)

Customization
⇒ Write functional extensions with Python scripts
Rest Interfaces
General Provenance storing information:

- localhost:9999/rest/provenance?
 - @param process String having the information about the process and its general type e.g. "process"
 - @param input String symbolizing all inputs e.g. "InputType~input1@29;InputType~input2@30;InputType~input2@40"
 - @param output String symbolizing the output e.g. "OutputType~output21@29"
 - @param actor String symbolizing the actor e.g. "ActorType~actor1;ActorType~actor2"

- OutputType/ InputType = Type defined in the model e.g: Manual
- ~ @ ; → Delimiter
- Input1 = identifier of the object
- 29 : Version of the object (e.g. differing modification dates for one object)
Rest Interface to query the Database

- localhost:9999/rest/gremlinquery
 - @param query gremlin query for a graphdatabase

Gremlinquery

- Getting all nodes in the database with the identifier „dataItem“ and returning the version of them

 - $item := g:key($_g, 'IDENTIFIER', " + dataItem + ")
 - $item/@version