
Davide Salomoni, Anna Karen Calabrese Melcarne,
Andrea Chierici, Gianni Dalla Torre, Alessandro
Italiano
INFN-CNAF, Bologna, Italy

ISGC 2011 - Taipei, 19-25 March, 2011

Performance Improvements
in a Large-Scale
Virtualization System

19-25 March, 2011D.Salomoni, ISGC 2011

Outline

Introduction to WNoDeS
Scaling locally distributed storage to

thousands of VMs
WNoDeS VM performance improvements
Conclusions

2

19-25 March, 2011D.Salomoni, ISGC 2011

Introduction to WNoDeS
 The INFN WNoDeS (Worker Nodes on Demand Service) is a

virtualization architecture targeted at Grid/Cloud integration
 Providing transparent user interfaces for Grid, Cloud and local access to

resources
 Re-using several existing and proven software components, e.g. Grid AuthN/

AuthZ, KVM-based virtualization, local workflows, data center schedulers
 See http://web.infn.it/wnodes for details

 In production at the INFN Tier-1, Bologna, Italy since November 2009
 Several million production jobs processed by WNoDeS (including those

submitted by experiments running at the LHC)
 Currently, about 2,000 dynamically created VMs
 Integration with the INFN Tier-1 storage system (8 PB of disk, 10 PB of tape

storage)
 Also running at an Italian WLCG Tier-2 site, with other sites considering its

adoption
3

http://web.infn.it/wnodes
http://web.infn.it/wnodes

19-25 March, 2011D.Salomoni, ISGC 2011

Key WNoDeS Characteristics
 Uses Linux KVM to virtualize resources on-demand; the resources are available

and customized for:
 direct job submissions by local users
 Grid job submissions (with direct support for the EMI CREAM-CE and WMS components)
 instantiation of Cloud resources
 instantiation of Virtual Interactive Pools (VIP)

 See e.g. the WNoDeS talk on VIP at CHEP 2010, October 2010
 VM scheduling is handled by a LRMS (a “batch system software”)

 No need to develop special (and possibly unscalable, inefficient) resource brokering
systems

 The LRMS is totally invisible to users for e.g. Cloud instantiations
 No concept of “Cloud over Grid” or “Grid over Cloud”

 WNoDeS simply uses all resources and dynamically presents them to users as users want
to see and access them

 At this conference, see also:
 Grids and Clouds Integration and Interoperability: an Overview
 A Web-based Portal to Access and Manage WNoDeS Virtualized Cloud Resources

4

19-25 March, 2011D.Salomoni, ISGC 2011

WNoDeS Release Schedule
 WNoDeS 1 released in May 2010
 WNoDeS 2 “Harvest” public release scheduled for September 2011

 More flexibility in VLAN usage - supports VLAN confinement to certain hypervisors only
 Used at CNAF to implement a “Tier-3” infrastructure alongside the main Tier-1

 libvirt now used to manage and monitor VMs
 Either locally or via a Web app

 Improved handling of VM images
 Automatic purge of “old” VM images on hypervisors
 Image tagging now supported
 Download of VM images to hypervisors via either http or Posix I/O

 Hooks for porting WNoDeS to LRMS other than Platform LSF
 Internal changes

 Improved handling of Cloud resources
 New plug-in architecture

 Performance, management and usability improvements
 Direct support for LVM partitioning, significant performance increase with local I/O
 Support for local sshfs or nfs gateways to a large distributed file system
 New web application for Cloud provisioning and monitoring, improved command line tools

5

19-25 March, 2011D.Salomoni, ISGC 2011

Outline

Introduction to WNoDeS
Scaling locally distributed storage to

thousands of VMs
WNoDeS VM performance improvements
Conclusions

6

19-25 March, 2011D.Salomoni, ISGC 2011

Alternatives to mounting
GPFS on VMs
 Preliminary remark: the distributed file system

adopted by the INFN Tier-1 is GPFS
 Serving about 8 PB of disk storage directly, and

transparently interfacing to 10 PB of tape storage via
INFN’s GEMSS (an MSS solution based on StoRM/
GPFS)

 The issue, not strictly GPFS-specific, is that any CPU
core may become a GPFS (or any other distributed
FS) client. This leads to GPFS clusters of several
thousands of nodes (WNoDeS currently serves about
2,000 VMs at the INFN Tier-1)
 This is large, even according to IBM, requires special care

and tuning, and may impact performance and functionality
of the cluster

 This will only get worse with the steady increase in the
number of CPU cores in processors

 We investigated two alternatives, both assuming that an
HV would distributed data to its own VMs

 sshfs, a FUSE-based solution
 a GPFS-to-NFS export

7

Hypervisor (no GPFS)

VM
(GPFS)

VM
(GPFS)

VM
(GPFS)

GPFS-based
Storage

VM
(sshfs)

VM
(sshfs)

VM
(sshfs)

GPFS-based
Storage

Hypervisor ({sshfs,nfs}-to-GPFS)

19-25 March, 2011D.Salomoni, ISGC 2011

sshfs vs. nfs: throughput

8

 sshfs throughput constrained by encryption (even with the lowest possible encryption level)
 Marked improvement (throughput better than nfs) using sshfs with no encryption through

socat, esp. with some tuning
 File permissions are not straightforward with socat, though - complications with e.g.
glexec-based mechanisms

0

30

60

90

120

ss
hf

s,
 s

oc
at

ss
hf

s,
 a

rc
fo

ur

ss
hf

s,
 s

oc
at

 +
 o

pt
io

ns
 (*

)

nf
s

gp
fs

85,29

48,90
54,60

45,60

98,60

112,0

76,1

101,2

39,540,0

Throughput

M
B

/s

Write
Read

(*) socat options: direct_io,
no_readahead, sshfs_sync

GPFS on VMs (current setup)

19-25 March, 2011D.Salomoni, ISGC 2011

sshfs vs. nfs: CPU usage

9

0

7,5

15,0

22,5

30,0

ss
hf

s,
 s

oc
at

ss
hf

s,
 a

rc
fo

ur

ss
hf

s,
 s

oc
at

 +
 o

pt
io

ns
 (*

)

nf
s

13,612,8

17,119,3

4,44,3
6,3

4,3

Write: Hypervisor CPU Load

usr sys

0

7,5

15,0

22,5

30,0

ss
hf

s,
 s

oc
at

ss
hf

s,
 a

rc
fo

ur

ss
hf

s,
 s

oc
at

 +
 o

pt
io

ns
 (*

)

nf
s

8,0

13,6

15,1
15,4

4,44,3
6,8

4,3

Read: Hypervisor CPU Load

usr sys

Write

Read

Overall, socat-
based sshfs w/
appropriate
options seems
the best
performer

(*) socat options: direct_io,
no_readahead, sshfs_sync

0

25

50

75

100

ss
hf

s,
 s

oc
at

ss
hf

s,
 a

rc
fo

ur

ss
hf

s,
 s

oc
at

 +
 o

pt
io

ns
 (*

)

nf
s

gp
fs

29,3

46,3

17,5

39,0

35,1

3,82,83,6

51,3

7,9

Write: VM CPU Load

0

22,5

45,0

67,5

90,0

ss
hf

s,
 s

oc
at

ss
hf

s,
 a

rc
fo

ur

ss
hf

s,
 s

oc
at

 +
 o

pt
io

ns
 (*

)

nf
s

gp
fs

14,1

27,5
14,6

26,6

31,5

4,92,3
9,4

55,6

17,5

Read: VM CPU Load

GPFS on VMs (current setup)

GPFS on VMs (current setup)

19-25 March, 2011D.Salomoni, ISGC 2011

sshfs vs. nfs Conclusions
 An alternative to direct mount of GPFS filesystems on thousands of VMs

is available via hypervisor-based gateways, distributing data to VMs
 Overhead, due to the additional layer in between, is present. Still, with

some tuning it is possible to get quite respectable performance
 sshfs, in particular, performs very well, once you take encryption out. But one

needs to be careful with file permission mapping between sshfs and GPFS,
especially in case of e.g. glexec-based identity change

 Watch for VM-specific caveats
 For example, WNoDeS supports hypervisors and VMs to be put in multiple

VLANs (VMs themselves may reside in different VLANs)
 Avoid that network traffic between hypervisors and VMs exits the physical

hardware using locally known address space and routing rules
 Support for sshfs or nfs gateways is scheduled to be included in

WNoDeS 2 “Harvest”

10

19-25 March, 2011D.Salomoni, ISGC 2011

Outline

Introduction to WNoDeS
Scaling locally distributed storage to

thousands of VMs
WNoDeS VM performance improvements
Conclusions

11

19-25 March, 2011D.Salomoni, ISGC 2011

VM-related Performance Tests
 Preliminary remark: WNoDes uses KVM-based VMs, exploiting the KVM -snapshot flag

 This allows us to download (via either http or Posix I/O) a single read-only VM image to each
hypervisor, and run VMs writing automatically purged delta files only. This saves substantial disk
space, and time to locally replicate the images

 We do not run VMs stored on remote storage - at the INFN Tier-1, the network layer is stressed out
enough by user applications

 For all tests: since SL6 was not available at the time of testing, we used RHEL 6
 Classic HEP-Spec06 for CPU performance
 iozone to test local I/O
 Network I/O:

 virtio-net has been proven to be quite efficient (90% or more of wire speed)
 We tested SR-IOV, but on single Gigabit ethernet interfaces only, where its performance enhancements

were not apparent. Tests on 10 Gbps cards are ongoing, and there we expect to see some improvements,
especially in terms of latency.

 Disk caching is (should have been) disabled in all tests
 Local I/O has typically been a problem for VMs

 WNoDeS not an exception, esp. due to its use of the KVM -snapshot flag
 The next WNoDeS release will still use -snapshot, but for the root partition only; /tmp and local

user data will reside on a (host-based) LVM partition

12

19-25 March, 2011D.Salomoni, ISGC 2011

Testing set-up

HW: 4x Intel E5420, 16 GB RAM, 2x 10k rpm SAS
disk using an LSI Logic RAID controller

SL5.5: kernel 2.6.18-194.32.1.el5,
kvm-83-164.el5_5.9

RHEL 6: kernel 2.6.32-71, qemu-kvm 0.12.1.2-2.113
SR-IOV: tests on a 2x Intel E5520, 24 GB RAM with

an Intel 82576 SR-IOV card

 iozone:
iozone -Mce -l -+r -r 256k -s <2xRAM>g -f
<filepath> -i0 -i1 -i2

13

19-25 March, 2011D.Salomoni, ISGC 2011

HS06 on Hypervisors and VMs
(Intel E5420)
 Slight performance increase of RHEL6 vs. SL5.5 on the hypervisor

 Around +3% (exception made for 12 instances: -4%)
 Performance penalty of SL5.5 VMs on SL5.5 HV: -2.5%
 Unexpected performance loss of SL5.5 VMs on RHEL6 vs. SL5.5 HV (-7%)

 Test to be completed with multiple VMs

14

0

20

40

60

80

1 4 8 12

69,5170,74

48,89

13,97

72,52
68,58

47,55

13,50

HS06, Intel E5420 on HV

H
S

06

Number of instances

SL5.5
RHEL6

12,0

12,5

13,0

13,5

14,0

SL
5.

5

R
H

EL
6

SL
5.

5
VM

 o
n

SL
5.

5

SL
5.

5
VM

 o
n

R
H

EL
6

12,28

13,16

13,97

13,50

HS06, Intel E5420

H
S

06

19-25 March, 2011D.Salomoni, ISGC 2011

iozone on SL5.5 (SL5.5 VMs)
 iozone tests with caching disabled, file size 4 GB on VMs with 2GB RAM
 host with SL5.5 taken as reference
 VM on SL5.5 with just -snapshot crashed
 Based on these tests, WNoDeS will support -snapshot for the root partition and a (dynamically created)

native LVM partition for /tmp and for user data
 A per-VM single file or partition would generally perform better, but then we’d practically lose VM instantiation dynamism

15

-90,00%

-67,50%

-45,00%

-22,50%

0%

22,50%

write rewrite read reread rand read rand write

iozone on SL5.5 (reference: host on SL5.5)

vm sl5.5 file
vm sl5.5 lvm snap
vm sl5.5 nfs snap

19-25 March, 2011D.Salomoni, ISGC 2011

iozone on RHEL6 (SL5.5 VMs)

16

0

200000

400000

600000

800000

ho
st

 rh
el

6

vm
 s

l5
.5

 fi
le

vm
 s

l5
.5

 fi
le

 s
na

p
vm

 s
l5

.5
 fi

le
 s

na
p

ai
o

vm
 s

l5
.5

 lv
m

 s
na

p
ai

o
vm

 s
l5

.5
 n

fs
 s

na
p

iozone on RHEL6

write
rewrite
read
reread
rand read
rand write

-90,00%

-67,50%

-45,00%

-22,50%

0%

22,50%

w
rit

e

re
w

rit
e

re
ad

re
re

ad

ra
nd

 re
ad

ra
nd

 w
rit

e

iozone, RHEL6 vs. SL5.5

 Consistently with what was seen with some CPU performance tests, iozone on RHEL6 surprisingly
performs often worse than on SL5.5
 RHEL6 supports native AIO and preadv/pwritev: group together memory areas before reading or writing them.

This is maybe the reason for some funny results (unbelievably good performance) of the iozone benchmark.
 Assuming RHEL6 performance will be improved by RH, using VM with -snapshot for the root partition

and a native LVM patition for /tmp and user data in WNoDes seems a good choice here as well
 But we will not upgrade HVs to RHEL6/SL6 until we are able to get reasonable results in this area

19-25 March, 2011D.Salomoni, ISGC 2011

Network

 SR-IOV slightly
better than virtio
wrt throughput

 Disappointing
SR-IOV
performance wrt
latency, CPU
utilization

17

0

250

500

750

1000

Host VM, SR-IOV VM, virtio

928919

817

618
661676

Network Throughput, 1 VM

Th
ro

ug
hp

ut
 (M

b
it/

s)

Out In

0

250

500

750

1000

SR-IOV, out virtio, out SR-IOV, in virtio, in

486476
439

473

456466442469

Network Throughput, 2 VMs

Th
ro

ug
hp

ut
 (M

b
it/

s)

VM #1 VM #2

0

2,5

5,0

7,5

10,0

SR-IOV virtio

3,10

4,93

2,90

4,93

CPU Utilization

%
 C

P
U

VM #1 VM #2

0

125

250

375

500

host VM, SR-IOV VM, virtio

275

488

245
286

488

248

Latency (lmbench)

μs
ec

TCP UDP

19-25 March, 2011D.Salomoni, ISGC 2011

WNoDeS VM Performance
Improvements: Conclusions
 The -snapshot KVM flag is handy, but

may incur in massive I/O overhead (or even
crashes, with very large files)

 -snapshot is not directly supported by
libvirt
 Simple workaround integrated in WNoDeS

 Keeping the -snapshot flag and adding a
dynamically-created LVM partition as a
secondary VM disk maintains flexibility and
significantly improves performance
 Isolating I/O VM space
 For security reasons, Cloud-based instances

may need to use a completely separated
partition

 Needed also to support future “custom images”
 Direct support for dynamic LVM partitioning

will be included in WNoDeS 2 “Harvest”
 Flexible partitioning consistent with the

WNoDeS definition of VM instance types (see
talk on the WNoDeS Cloud Portal)

18

XML definition for libvirt-based WNoDeS VMs supporting
the -snapshot flag:

 ...
 <devices>
 <emulator>/usr/local/bin/qemu-kvm-snapshot</emulator>
 ...

[davide@iz4ugl WNoDeS]$ cat /usr/local/bin/qemu-kvm-snapshot
#!/bin/bash

CMDLINE=
for i in $*
do
 if [[$i =~ "^file="]]
 then
 if [[$i =~ "boot=on"]]
 then
 CMDLINE="$CMDLINE $i"
 else
 CMDLINE="$CMDLINE $i,snapshot=off"
 fi
 else
 CMDLINE="$CMDLINE $i"
 fi
done

exec /usr/libexec/qemu-kvm $CMDLINE -snapshot
[davide@iz4ugl WNoDeS]$

19-25 March, 2011D.Salomoni, ISGC 2011

Outline

Introduction to WNoDeS
Scaling locally distributed storage to

thousands of VMs
WNoDeS VM performance improvements
Conclusions

19

19-25 March, 2011D.Salomoni, ISGC 2011

Conclusions
 VM performance tuning still requires detailed knowledge of system internals and sometimes of

application behaviors
 Testing is deliciously complicated
 Many improvements of various types have generally been implemented in hypervisors and in VM

management systems. Some not described here are:
 KSM (Kernel Samepage Merging) to overcommit memory. Due to the nature of our typical applications, we normally

do not overcommit memory (YMMV).
 VM pinning. Watch out for I/O subtleties in CPU hardware architectures.
 Advanced VM brokerage. WNoDeS fully uses LRMS-based brokering for VM allocations; thanks to this, algorithms for

e.g. grouping VMs to partition I/O traffic (for example, to group together all VMs belonging to a certain VO/user group)
or to minimize the number of active physical hardware (for example, to suspend / hibernate / turn off unused
hardware) can be easily implemented (whether to do it or not depends much on the data centers infrastructure /
applications)

 WNoDeS is facilitated in this type of performance tuning by the fact that it only focuses on Linux KVM as an
hypervisor; there is no intention to make it more general and support other hypervisors

 The steady increase in the number of cores per physical hardware has a significant impact in the
number of virtualized systems even on a medium-sized farm
 This is important both for access to distributed storage, and for the set-up of traditional batch system clusters

(e.g. the size of a batch farm easily increases by an order of magnitude with VMs).
 The difficulty is not so much in virtualizing (even a large number of) resources. It is much more in

having a dynamic, scalable, extensible, efficient architecture, integrated with local, Grid, Cloud
access interfaces and with large storage systems.

20

