Grid Operational Supports for Middleware Deployment and User Administration

International Symposium on Grids and Clouds 2010
March 23, 2011
Academia Sinica, Taipei, Taiwan

Eisaku Sakane1, Kento Aida1,2,
Manabu Higashida3, Taizo Kobayashi4, Hirofumi Amano4,
Mutsumi Aoyagi4

1National Institute of Informatics
2Tokyo Institute of Technology
3Osaka University
4Kyushu University
Table of Contents

• Background
• Inter-university Grid Infrastructure
• Grid Middleware Deployment
• User Administration
• Summary
Background

• Toward construction of a production level science grid, geographically distributed computational resources have to work in close cooperation with each other
• Organizations offering computational resources to the grid are independent of each other
• To do so, a grid middleware is needed
 – Grid middleware is a large software collection
 – It is hard to install and configure the middleware because administrators need much knowledge
 – There are several methods that make installation easier
 – Consistent configuration of middleware in multiple sites is still hard because administrators need to configure settings properly communicating with administrators in multiple site
• Each resource provider operates own computational resources under each operation policy
 – To use the resources, users must apply for an account at multiple site
 – Administrators must maintain mapping information between users’ client certificates and local account in sites if GSI is adopted as security infrastructure

• To enable users to access the grid infrastructure, a systematic user administration for the grid infrastructure is needed
Inter-university Grid Infrastructure

• In case of Japan...

• An inter-university grid infrastructure is organized by
 – supercomputer centers in 9 universities
 – an operation center in National Institute of Informatics (NII)

• NAREGI Middleware was adopted to operate the inter-university grid infrastructure
Resource Providers

- Research Institute for Information Technology, Kyushu University
- Information Initiative Center, Hokkaido University
- Information Technology Center, Nagoya University
- National Institute of Informatics
- Cyberscience Center, Tohoku University
- Center for Computational Sciences, University of Tsukuba
- Information Technology Center, University of Tokyo
- Global Scientific Information and Computing Center, Tokyo Institute of Technology
- Academic Center for Computing and Media Studies, Kyoto University
- Cybermedia Center, Osaka University

(resource provider)
(operation center)
Computer Systems

<table>
<thead>
<tr>
<th>Site</th>
<th>Hardware</th>
<th>#cores*</th>
<th>Memory[GB]**</th>
<th>#nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido U.</td>
<td>DELL PowerEdge R200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hitachi HA8000/110W</td>
<td>2</td>
<td>2/4</td>
<td>27</td>
</tr>
<tr>
<td>Tohoku U.</td>
<td>NEC SX-9</td>
<td>16</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>U. Tsukuba</td>
<td>Appro XtremeServer-X3</td>
<td>16</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>U. Tokyo</td>
<td>Hitachi HA8000-tc/RS425</td>
<td>16</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>Tokyo Tech.</td>
<td>HP ProLiant SL390s</td>
<td>12</td>
<td>54/96</td>
<td>375</td>
</tr>
<tr>
<td>Nagoya U.</td>
<td>Fujitsu PRIMERGY RX200</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Fujitsu HX600</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>Kyoto U.</td>
<td>Fujitsu HX600</td>
<td>16</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>Osaka U.</td>
<td>NEC SX-8R</td>
<td>8</td>
<td>64/256</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>NEC SX-9</td>
<td>16</td>
<td>1000</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>NEC Express5800/120Rg-1</td>
<td>4</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Kyushu U.</td>
<td>Fujitsu PRIMERGY RX200S3</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

#cores* = #cores/node, Memory[GB]** = Memory[GB]/node
Grid Middleware

- developed by the Centre for Grid Resource and Development, NII

 - uses GSI and VOMS

- computing services

- control nodes (operated in OC)
 - grid service (security, job brokering, information service, portal, ...)

- control nodes (operated in OC)
 - grid service (security, job brokering, information service, portal, ...)
Target Problems

• Deployment of grid middleware
 – installation
 • must be done easily
 – configuration
 • must be done correctly and effectively

• User administration
 – applying for accounts at multiple sites
 – obtaining grid user certificate
 – creating grid-mapfile at each site
Deployment of Grid Middleware

• We need to deploy suitable components of the NAREGI middleware to both resource providers and the operation center

• We developed installation tools to deploy the NAREGI middleware
 – The installation tools enable administrators of both resource providers and the operation center to install suitable components in their sites
Configuration Procedure

• In deployment using our tools, a configuration procedure will be done as follows

(1) Application to add/delete computing nodes

(2) Configures to add/delete computing nodes

(3) Generates a configuration file for the resource provider

(4) Configures computing nodes using the configuration file

(5) Start operation

(6) Start operation
Remarkable Points in Deployment

• The installation tools make configuration procedures easier by concentrating necessary information on single configuration file

• What administrators in resource provider have to know is
 – simple information of grid component configuration
 • This node is a GridVM component, ...
 – basic information about computing nodes that administrators manage daily

• No deep knowledge of grid middleware is needed
Target Problems

• Deployment of grid middleware
 – installation
 • must be done easily
 – configuration
 • must be done correctly and effectively

• User administration
 – applying for accounts at multiple sites
 – obtaining grid user certificate
 – creating grid-mapfile at each site
Grid-Pack

• We established an application system, called “Grid-Pack”, solving the problems

• Concept of Grid-Pack
 – User applies for account at only one resource provider (Grid-Pack application)
 – Grid-Pack application = account & certificate requests
 – Proxy application procedure to create an account on another resource provider
 – RA operation on each resource provider (LRA) following the Authentication Profile for Classic X.509 PKI
 – semi-automatic generation mechanism of grid-mapfile at each site
Registration of User Account

User

grid-pack application

Computer Center A

LRA operator

account request + GPID

Computer Center B ...

admin.

user account

User admin.

Computer Center A

User admin.

LRA operator

User admin.

User account

User admin.

Computer Center B ...

User admin.

LRA operator

User admin.

User account

User admin.

Registration of User Account

Computer Center A

User

grid-pack application

LRA operator

account request + GPID

Computer Center B ...

admin.

user account

User admin.

Computer Center A

User admin.

LRA operator

User admin.

User account

User admin.

Computer Center B ...

User admin.

LRA operator

User admin.

User account

User admin.

Registration of User Account

Computer Center A

User

grid-pack application

LRA operator

account request + GPID

Computer Center B ...

admin.

user account

User admin.

Computer Center A

User admin.

LRA operator

User admin.

User account

User admin.

Computer Center B ...

User admin.

LRA operator

User admin.

User account

User admin.

Registration of User Account

Computer Center A

User

grid-pack application

LRA operator

account request + GPID

Computer Center B ...

admin.

user account

User admin.

Computer Center A

User admin.

LRA operator

User admin.

User account

User admin.

Computer Center B ...

User admin.

LRA operator

User admin.

User account

User admin.
Problem in Grid-Pack

- The operation center notifies users of LicenseID.
 - sends users an email attached an encrypted archive including UMS account, password and LicenseID.
 - notifies users of the password of the encrypted archive by telephone.

- User identification with F2F interview
- With drastic increase of the number of user at be bottle-neck of the procedure.

- How do we ease heavy duties in the operation?
Federated Authentication System with Shibboleth

LicenseID

– Grid Portal: Service Provider
 • operations on UMS
 – storing user certificate

LicenseID

– Grid Portal: Service Provider
 • operations on UMS
 – creating user account
 – storing user certificate
Shibboleth

Operation center

CA system

Repository

VOMS

UMS

Shib-DS

Resource provider

Portal

(myproxy-server)

Shib-SP

Shib-IdP

DB
Summary

• We mentioned our experience of grid operational supports in the inter-university grid infrastructure focusing on the grid middleware deployment and the user administration

• The grid middleware installation tools enable administrators in resource provider to install and configure grid middleware without detailed knowledge of the middleware

• The user administration tools offer users to apply accounts to use the grid infrastructure in easy way and help administrators to register user accounts and maintain grid-mapfiles in multiple resource providers
Future Plan

• We plan to extend the testbed for the authentication system using GSI and Shibboleth in order to start operation among 9 resource providers.

• The goal is to start the production level operation of the user administration in FY2011.